USN					

Internal Assessment Test 1 – Mar. 2018

Sub:	Microwave The	Sub Code:	15TE63	Branch:	TCE						
Date:	14/03/2018 Duration: 90 mins Max Marks: 50 Sem / Sec: 6									OBE	
	Answer any FIVE FULL Questions MARKS										RBT
1	Derive the expressi	ions for instanta	aneous voltage	and current at any	point o	on the transmiss	sion line.	[10]	CO1	L3
2	A transmission line 0.23 pF/m. Calcula						GHz, $L = 8 nH/m$	n, C= [10]	CO1	L3
3	What is Smith Cha	rt? With usual 1	notations show	the construction of	f Smitl	n chart (Smith c	ircle diagram).	[10]	CO1	L3
4	A transmission line losses having chara		0			3	The line has neg	ligible [10]	CO1	L4
5	A line of Ro= 400 Q is connected to a load of 200+300Q, which is excited by a matched generator at 800MHz.								CO1	L4	
6	Define reflection and transmission coefficients. Derive expressions for both in terms of impedances and also get [10]							CO1	L3		
				$nce R_0 = 50$					10]	CO1	L4
7	$Z_l = \frac{50}{[2+j(2+1)]}$	$\frac{1}{1+\sqrt{3}}$ Ω .by n	neans of a loss	sless short-circuited	d stub.	The characteri	stic impedance o	of the			
	stub is 100 Ω . Find										
8.	With the help of ne	eat sketch, expla	in the working	g of reflex klystron	oscilla	ntor. Discuss mo	odes of oscillation	1. [10]	CO1	L2

USN					

Internal Assessment Test 1 – Mar. 2018

						1,101, =0					
Sub:	Microwave Theory and Antenna					Sub Code:	15TE63 Branch: TCE				
Date:	14/03/2018	Duration:	90 mins	Sem / Sec:	6			OBE			
	Answer any FIVE FULL Questions MARKS										RBT
1	1 Derive the expressions for instantaneous voltage and current at any point on the transmission line. [10]										L3
2	2 A transmission line has the following parameters R = 2 Ω/m, G = 0.5 m mho/m, f = 1GHz, L = 8 nH/m, C= [10] 0.23 pF/m. Calculate: (a) the characteristic impedance; (b) the propagation constant									CO1	L3
3	What is Smith Cha	rt? With usual 1	notations show	the construction of	f Smitl	n chart (Smith c	rircle diagram).		[10]	CO1	L3
4	4 A transmission line 2.413 wavelength long is terminated in an impedance of 150+j60 Ω The line has negligible [10] losses having characteristic impedance of 75 Ω. Find the input impedance.									CO1	L4
5	5 A line of Ro= 400Ω is connected to a load of $200+j300\Omega$, which is excited by a matched generator at 800 MHz. [10] Find the location and length of a single stub nearest to the load to produce an impedance match.									CO1	L4
6	6 Define reflection and transmission coefficients. Derive expressions for both in terms of impedances and also get an expression relating them. [10]									CO1	L3
7	A lossless line $Z_l = \frac{50}{[2+j(2+1)]}$		-						[10]	CO1	L4
	$[2+j(2+i)]$ stub is 100 Ω . Find							r the			
8.	With the help of ne							ı .	[10]	CO1	L2