

Internal Assessment Test 1 – March 2018

Sub: Principles of communication systems		Sub Code:	15EC45	Branch:	TCE/ECE		
Da	Date: 14/03/2018 Duration: 90 mins Max Marks: 50 Sem / Sec: 4/A,4/A				OBE		
Answer any FIVE FULL Questions			MA	CO	RBT		
1 (a)	A modulating signal given by $m(t) = 2 \sin(1000\pi t)$ amplitude	n madulatas	a carriar di	wan	RKS [10]	co1	L3
1 (a)	(a) A modulating signal given by $m(t) = 2 \sin(1000\pi t)$ amplitude modulates a carrier given by $c(t) = 10 \sin(2\pi \ 106^6 t)$ with a modulation index of 0.5. Find:				[10]	COI	LO
	a) Frequencies present in the modulated signal,						
	b) Amplitude of each side band.						
	c) Bandwidth required.						
	d) Total transmitted power before and after modulation						
	e) Sketch the spectrum					4	
2 (a)	What is FDM? With a neat block diagram, explain FDM.				[5]	col	L4
(b)	Explain the operation of a mixer with a neat block diagram				[5]	co1	L4
3 (a)	Explain the operation of coherent detection of DSBSC mod loop circuit.	lulating wa	ve along w	ith costas	[10]	co2	L4
4 (a)	What is VSB modulation? Explain the characteristics of a VSB	B filter.			[10]	co1	L4
5(a)	Explain the operation of the switching modulator with circui	t diagram, a	nd wavefor	rm.	[6]	Co2	L4
(b)	Describe the operation of envelope detector with neat diag the significance of RC time constant of the circuit in detection	•		U	[4]	Co2	L1
6(a)	Discuss briefly the operation of the ring modulator with waveforms.	h circuit di	agram and	relevant	[5]	Co2	L2
(b)	A carrier signal c $(t) = 10 \cos(2\pi 10^6 \ t)$ is modulated by a metal to generate a DSB SC signal. Sketch the spectrum and c and modulation efficiency.	0 0			[5]	Co1	L3

Coherent Detection of DSB-SC

Block Diagram:

- -> Here its assumed that the carrier signal used is Similar to that of cet) used at Transmitter
- -> The modulated DSBSC signal is applied to the Coherent Detector of the casein signal is supplied by the Local oscillator.
- -> The obtained signal is then passed through of how pass filter which removes the higher frequency components other than te.

- = Acmit) cos 211 Fet · cos 211 Fet
- = Ac mit) [1 + cos 211 [2fe]t].
- VIt) = Acmit) + Acmit) cos 211 (ate)+.
- After passing through a low pass fitter

If noe consider the carrier signal with phase. $(lt) = cos(211fet + \phi)$

V(t) = Ac m(t) cos 21 fet · co(21 fet + 0)

= Ac m(t) [cos(41 fet + 0) + cos 0]

V(t) = Acmit) Cos(ATTfet + p) + Acmit) cosp

After passing through a Low panfulter

 $V(t) = \frac{Acmet}{a} \cos \phi$.

case i: if $\phi = 0$.

V(t) = Acmill)

message signal can be retained.

Case (ii) if \$ = 900

message signal cannot be retained

50

Switching Modulator: Juic is the modulator used to generate AM wave by capturing the Effect of ON & OFF (Switch).

-> An ideal diode can be best candidate to serve as a switch

-> circuit Diagram.

N2 Slope-/

 \rightarrow V(1t) can be given as $V_1(t) = m(t) + c(t)$.

and V, Lt) = { V, Lt), LLt) > 0 0 , LLt) < 0.

.. V, ut) = V1 (t). gpt).

vohere get is a periodic signal with Period (To) = 1 and 50% duty cycle.

Ideal diode is seplaced by gplt) because

an =
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{t-1)^{n-1}}{2n-1} \cos 2\pi (2n-1) + t$$

:
$$V_{2}(t) = \left[m(t) + c(t)\right] \left[\frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos 2\pi t (2n-1) + t \right]$$

$$V_{2}(t) = \left[m(t) + Ae \cos 2\pi t (t)\right] \left[\frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos 2\pi t (2n-1) + t \right]$$

$$if n = 1$$

$$V_{2}(t) = \left[m(t) + Ae \cos 2\pi t (t)\right] \left[\frac{1}{2} + \frac{2}{\pi} \cos 2\pi t (t)\right]$$

Envelope is the trace drawn by touching the peak amplitudes of the signal.

circuit Diagram.

- > During the positive hay cycle of the input bignal deode is forward biased and capacitor charges to it maximum value i.e., peak of input bignal
- max value the capacitor starts discharing through capacitor till the next positive ball cycle.
- -> When the input signal becomes greater than the voltage across the capacitor then the capacitor than the capacitor sharges and eyele seperate.
- The charging time constant should be as small as possible compared to carries period for the rapid charging of capacitor 1.e., (Rs+84) (<< 1/2 fc
-) The Discharging time constant should be as earge as possible for the slow discharging compared with the message period

SSB - lower side band retained.

heter here

$$V(1) = \frac{Ac}{a} \left[m \left(1 - f_c \right) + M \left(+ + f_c \right) \right]$$

$$S(f) = V(f) \cdot H(f)$$
.

$$S(t) = \frac{Ac}{4} [M(t-h)+M(t+h)] \left[\frac{1}{4} (Sqn(t+h)) - Sqn(t+h)\right]$$

$$S(t) = \frac{Ac}{4} [M(t-h) Sqn(t+h) - M(t+h) Sqn(t-h)]$$

$$+ M(t+h) Sqn(t+h) - M(t+h) Sqn(t-h)$$

$$= \frac{Ac}{4} [M(t-h) Sqn(t+h) - M(t+h) Sqn(t-h)] + \frac{Ac}{4} [M(t+h) Sqn(t+h)] - M(t+h) Sqn(t+h)]$$
on taking IFT
$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t-h) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

$$= \frac{Ac}{4} [M(t-h) - (-M(t+h))] = \frac{Ac}{4} [M(t) - (-M(t+h))]$$

```
= Ac [M(++11) + M(++11)] + Ac m(1)
```

= Ac met) cos 211fet + Ac mell) sin211fet.

S(t) LSSB-SC = Ac [M(t) Cosszirfet + m (t) sinzifet]

Amplitude Modulation :- It is the process of varying peak amplitude of the carrier wave according to the message signal by keeping frequency and phase constant.

Single tone 3-

SUt) Am = Ac[1+ Kamet)] Cos > Tifet.

mit) = Am Cos 211 fint

cut) = Ac cos 27 fet.

SUt) Am = Ac[1+ Ka Am Cos 271 fmt] Cos 271 fct

SLE) Am = Ac Cos 271 fet + Ac M Cos 271 fort Cos 211 fet

Be M = Ka Am modulation index

SUDAM = Accos 271fet+ ACH [cos 211 (te+Am) + + cos (21) (te-fm)

By taking Foreier Franchom:
$$S(t)_{am} = \frac{Ac}{c} \left[S(t-4c) + S(t+4c) \right] + \frac{Ac}{4}$$

$$\left[\left(S(t-(4c+6m)) + S(t+4c+6m) \right) + S(t-(4c+6m)) + \frac{Ac}{4} \right]$$

$$S(t+(4c-6m)) + \frac{Ac}{4} \left[\frac{Ac}{4} \right]$$

Multilone Algoral miles - Angiorism Angiorism to a miles - - clt) s (ms 2 mfet S(1) Am - Re 1+ Ka (Anglos 211 fort + Anglos 211 fort) Cossisted CIE) Am - Ac Constitute + Ac Ily [cos(21) (tos+ton))+) + Cos20 fects) + Ac 1/2 Cos 28 (fet tro)+ + Cos 28 (te - for2) + By taking foreign handform (1) = Ac (s(++tc) + s(++fc)) + Ac 14 (S(+-(fe+fm)) + S(++(fe+fm)) + S(+-(fe+fm)) + S(++(fe+fm)) + S(++(fe+fm)) + Ac Me S(+- (++++m2)+S(++(+e++m2))+ S (+-(+e-+m2)+
S(++(+e-+m2))


```
1(a):- Gimen
      m(+) = 2sin(1000xt) = Musage signal - (i)
      c(t) = losin(2010bt) = cuerier signal - (ii)
       u=0.5 = Modulation index.
 from egnli)
    tm= SOU HZ
    f = 106 Hz = 1000 KHZ
The time domein Am egn is given by.
  sit) = Acli+ kam(+)) simantit
        = 10 (1+ KaAmsinartmt) sinertil-
        = +0(++0.5 (in 2+fm+) sim 2+fel-
        = 10 (1+0.5 sin 2x500t) (in 2x106 t.
        = Losinger 106 t + sinner (500) tsimer 106 t
       = 105/ ndx 106+ + 5 [ws 2x (106-500) 1-
                                 - ws 2x (10 +500)+
a) frequencies presented in modulated lynal.
  i) f= 106 HZ.
   ii) fittm = 106+500 = 1000 COO HZ.
  111) /2-fm = 106-500 = 999500 HZ
```


d) Power transmitted before modulation
$$P_{\xi} = P_{c} = \frac{A_{c}^{2}}{2R} = \frac{L_{0}^{2}}{2} = 50 \text{ wasts}$$

After modulation

$$P_{4} = P_{c}(1+4/2)$$

$$= 56(1+0.5^{2}/2)$$

$$= 56(1+0.125)$$

$$= 50(1.125)$$

$$= 50 \times 1.125 = 56.25 \text{ matrix}$$

The modulated DEB-SC in time domain is given by

DIBSI = Acmit) costrfit

= 10 (2 cos 2x 4x103 t) cosax 106 t.

= 20 [W127 (4x103 +106)t

+ worder (106 - 4×103)+

