USN					
CDI					

INTERNAL ASSESSMENT TEST – III

Sub:	DIGITAL COMMUNICATION						Code:	15EC61	
Date:	21/05/2018	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Answer any 5 full questions

		Marks	СО	RBT
1	With the help of neat block diagrams of transmitter and receiver, explain coherent binary PSK modulation technique. Derive an expression for probability of error assuming equiprobable 0s and 1s.	[10]	CO3	L3
2	With the help of neat block diagrams of transmitter and receiver, explain coherent binary FSK modulation technique. Derive an expression for probability of error assuming equiprobable 0s and 1s.	[10]	CO3	L3
3	With the help of neat block diagrams of transmitter and receiver, explain QPSK modulation technique.	[10]	CO3	L2
4(a)	For the binary data 110010 sketch the waveform of the QPSK modulated signal. Clearly show the waveform of inphase and quadrature components of the modulated signal.		CO3	L2
4(b)	For the binary data 11010010, obtain the differentially encoded sequence. Indicate the phase of the DPSK modulated signal.	[04]	CO3	L2
5	Assuming the initial state of the shift register to be 100, find the output of the maximum length (ML) pseudo noise (PN) sequence generator shown in the following figure for 8 clock cycles. Output Verify the properties of ML PN sequence considering one period of the output.	[10]	CO5	L2
6	With neat block diagrams of transmitter and receiver, explain direct	[10]	CO5	L2
0	sequence spread spectrum (DSSS) communication.	[10]	CO3	L2

7	With neat block diagrams of transmitter and receiver, explain frequency	[10]	CO5	L2
	hopped spread spectrum (FHSS) communication. Distinguish between slow frequency hopping and fast frequency hopping.			
0()		50.53	G0.	T 0
8(a)	Write a note on application of direct sequence spread spectrum in code division multiple access (CDMA) communication systems.	[05]	CO5	L2
8(b)	Write a note on application of spread spectrum in wireless LANs.	[05]	CO5	L2

Solution and Scheme of Evaluation

$$S_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t), oct = T_b$$

$$S_2(t) = -\sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t), \quad 0 \leq t \leq T_b$$

$$\phi_1(t) = \sqrt{\frac{2}{16}} \cos(2\pi f_c t), \sigma \in t \in T_6$$

$$\frac{S_2}{-\sqrt{E_b}} \stackrel{S_1}{\circ} \sqrt{E_b} \rightarrow 0$$

Transmitter

Receiver

Probability of error
$$f_{x}(x/0) = \frac{1}{\sqrt{11}N_{0}} e^{-(x+\sqrt{E_{b}})^{2}}$$

$$P_{e}(0) = \int_{0}^{\infty} f_{x}(Y_{0}) dx$$

$$= Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

2
$$s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t)$$
, $0 \le t \le T_b$
 $s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $0 \le t \le T_b$
 $\phi_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$, $\phi_1(t) = \sqrt{\frac{2E_b$

$$P_{e}(0) = \int_{0}^{\infty} f_{x}(x_{0}) dx$$

$$= \left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$$

3.
$$S_{i}(t) = \sqrt{\frac{2F}{T}} \cos \left(2\pi f_{i}t + (2i-1)\frac{\pi}{4}\right)$$
, $0 \le t \le T$
 $\Phi_{i}(t) = \sqrt{\frac{2F}{T}} \cos \left(2\pi f_{i}t\right)$, $0 \le t \le T$

$$\phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t), \quad 0 \leq t \leq T$$

$$(-\sqrt{E_{2}}, \sqrt{E_{2}})$$

$$(-\sqrt{E_{2}}, \sqrt{E_{2}})$$

$$(11)$$

$$-(4)$$

$$(-\sqrt{E_{2}}, -\sqrt{E_{2}})$$

Transmi Her

Binary
$$\Rightarrow S_{i}(t)$$

$$data = \begin{cases} 1:2 \\ demux \end{cases}$$

$$\phi_{2}(t)$$

i)Balance property

Number of
$$1s = 4$$

11 $0s = 3$

(i) Run property

00, 111, 0, 1

Number of runs = 2 = 4.

(iii) Autocorrelation property
$$R_{A}(n) = \begin{cases} -1 & \text{for } n = lN \\ N & \text{for } n \neq lN \end{cases}$$
(2)

DSSS Receiver

(3)

FHSS Transmitter

Sb) Spread spectrum signals are used in wireless LAN standards IEEE 802-11 and 8021116 ashich operate in Eigh 2.4 GHz.

In 802-11, 11-chip Barker sequence is used for modulation and demodulation along with BPSK modulation. (5)