USN					

Internal Assessment Test I – March. 2019

Sub:	FIBER OPTICS	& NETWO	RKS			Sub Code:	15EC82	Branch:	TCE		
Date:	Duration: 90 min's Max Marks: 50 Sem / Sec: 8th					8th		OF	3E		
	Answer any FIVE FULL Questions							MA	RKS	СО	RBT
1.	Summarize the conventional co		_	of optical fiber	con	nmunication	n over	[10]	CO1	L1
2.	Using ray theor	y explains	propagation	n of light inside	e the	e optical fib	er.	[10]	CO1	L1
3. (a)	Differentiate pl	hase & gro	oup velocity	. Draw neat dia	ıgra	m.		[06]	CO1	L2
(b)	Explain mode f	ield diame	ter.					[04]	CO1	L4
4 .	Derive expressi	on for N.A	. for skew	ray.]	10]	CO1	L2
5.	A silica optical theory analysis 1.47.Determine	s has a	core refra	active index of	of	1.5 and c	cladding r.i.		10]	CO1	L2
6.	A graded index a diameter of 5 modes propagat	0μm.The	fiber has N	.A. of 02.Estim	nate	the total n	umber of gui		.0]	CO1	L4
7.	Explain various	s types of s	cattering lo	sses in optical f	fibe	r.		[10]	CO1	L2

USN					

Internal Assessment Test I – March. 2019

		1 133C33IIICIIC I		Widicii. 20	-		1		
Sub:							TCE		
Date:	Duration: 90 min's Max Marks: 50 Sem / Sec: 8th							OI	
Answer any FIVE FULL Questions							RKS	СО	RBT
1.	Summarize the inherent advantages of	of optical fibe	r con	nmunication	n over	[10]	CO1	L1
	conventional copper cables.								
2.	Using ray theory explains propagation	n of light insid	de the	e optical fib	er.	[10]	CO1	L1
3. (a)	3. (a) Differentiate phase & group velocity. Draw neat diagram.						06]	CO1	L2
(b)	(b) Explain mode field diameter.						04]	CO1	L4
4. Derive expression for N.A. for a meridonial ray.						[10]	CO1	L2
5. A silica optical fiber with a core diameter large enough to be considered by ray theory analysis has a core refractive index of 1.5 and cladding r.i. of 1.47.Determine a) critical angle b) Numerical aperture c) acceptance angle.							10]	CO1	L2
6. A graded index fiber has a core with a parabolic refractive index profile which has a diameter of 50μm. The fiber has N.A. of 02. Estimate the total number of guided modes propagating in the fiber when it is operating at a wavelength of 1μm.								CO1	L4
7.	Explain various types of scattering lo	osses in optical	l fibe	r.		[10]	CO1	L2

FIBER OPTICS & NETWORKS Sub Code: | 15EC82 TCE (8th Sem) Branch:

1. Advantages over conventional Cu cables

(10 marks -1 marks for each point)

- a)Enormous potential BW
- b)Small size & weight
- c)Electrical isolation
- d) Immunity to interference & crosstalk
- e)signal security
- f)low transmission loss
- g)Flexibility
- h)System reliability
- i)potential low cost

2. Ray theory of transmission

- 1)Total internal reflection
- a)Refractive index (2 marks) b)Snell's law (2marks) c)Diagram of TIR (2 marks) d) Relationship with angle of incidence (2 marks) e)critical angle (2 marks)

(1 marks)

3.a)**Definition of phase velocity** Equation of $V_p = \frac{w}{\beta}$ & diagram

(2 marks)

(1 marks) (2 marks)

Definition of group velocity Equation of $V_g = \frac{dw}{d\beta}$ & diagr & diagram

b) Definition & Diagram of MFD

Equation MFD=2w

(2 marks)

(2 marks)

4. Meridonial ray geometrical diagram

(3 marks)

Derivation

a)Proof of snell's law

(5 marks)

b) Solution for final expression

(2 marks)

5. a) $\varphi_c = 78.5$ degree

(4 marks)

b) N.A. =0.30

(4 marks)

c) θ_a -17.4 degree

(2 marks)

6. **v**=31.4 (5 marks) Mg=247 modes (5 marks) 7. Scattering Losses (5 marks)

1.Linear a)Rayleigh Scattering b)Mie Scattering 2.Nonlinear a)SBS b) SRS (5 marks)