USN					

Internal Assessment Test I – Mar. 2019

Sub:	Machine Learning					Sub Code:	15EC834	Bran	nch:	TCE		
Date:	Date: 07/03/2019 Duration: 90 min's Max Marks: 50 Sem / Sec: A										OE	BE
		<u>A</u>	nswer any FΓ	VE FULL Questi	ons				MA	RKS	СО	RBT
1	Discuss the fo	ollowing for t	the learning t	task ' A Checke	r Lea	arning Proble	em'					
	a) Choo	sing the train	ing experien	ice					Г1	[0]	CO1	L1
	b) Choo	sing the targe	et function						[1	ioj	COI	
	c) Choo	sing the func	tion approxi	mation algorith	m							
2 (a)	What do you n	nean by a we	ll –posed lea	rning problem?	Exp	lain the impo	ortant features	that	Г	5]	CO1	L1
	are required to well –define a learning problem								L.		001	
2 (b)	2 (b) Comment on Issues in Machine Learning								[.	5]	CO1	L2
3	What is decision tree? Discuss the ID3 algorithm in details.								[1	[0]	CO2	L2
4 (a)	4 (a) Explain inductive bias through Candidate Elimination Algorithm								[()5]	CO1	L2
4 (b)	4 (b) Explain the inductive bias in decision tree learning.								[[)5]	CO1	L2
5(a)										1.0		
<i>3(a)</i>	Au) Dapiam the Dist. Then- Eminiate Algorithm with an example)5]	CO1	L2	
5(b)	5(b) List the issues in Decision Tree Learning							[()5]	CO2	L2	

Internal Assessment Test I – Mar. 2019

Sub:	Machine Learning					Sub Code:	15EC834	Bra	nch:	TCE		
Date:	07/03/2019	Duration:	90 min's	Max Marks:	50	Sem / Sec:	A				OE	BE
		<u>A</u>	nswer any FI	VE FULL Question	<u>ons</u>				MA	RKS	СО	RBT
1	Discuss the fo	llowing for t	he learning t	ask ' A Checke	r Lea	arning Proble	em'					
	a) Choos	sing the train	ing experien	ce					Г1	.0]	CO1	L1
	b) Choos	sing the targe	et function						[]	.0]	001	
	c) Choos	sing the func	tion approxi	mation algorithi	n							
2 (a)	What do you m	ean by a wel	ll –posed lea	rning problem?	Exp	lain the impo	ortant features	that	г	5]	CO1	L1
	are required to well –define a learning problem								L	<i>J</i>]	COI	LI
2 (b)	(b) Comment on Issues in Machine Learning								[.	5]	CO1	L2
3	What is decision tree? Discuss the ID3 algorithm in details.								[1	0]	CO2	L2
4 (a)	(a) Explain inductive bias through Candidate Elimination Algorithm								[()5]	CO1	L2
4 (b)	(b) Explain the inductive bias in decision tree learning.							[()5]	CO1	L2	
5(a)	(a) Explain the List –Then- Eliminate Algorithm with an example							[[)5]	CO1	L2	
F (1-)	1) List the issues in Decision Tree Learning											
5(b)	b) List the issues in Decision Tree Learning							[()5]	CO2	L2	

6	Apply the CANDIDATE-ELIMINATION Algorithm to find the final version space for the
	following example

Origin	Manufacturer	Color	Decade	Type	ExampleType
Japan	Honda	Blue	1980	Economy	Yes
Japan	Toyota	Green	1970	Sports	No
Japan	Toyota	Blue	1990	Economy	Yes
USA	Chrystler	Red	1980	Economy	No
Japan	Honda	White	1980	Economy	Yes

Illustrate the operation of ID3 for the following training examples given in the table below. Here the target attribute is Play Tennis. Draw the complete decision tree

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

7

|--|

CO2 L3

[10]

6 Apply the CANDIDATE-ELIMINATION Algorithm to find the final version space for the following example

Origin	Manufacturer	Color	Decade	Type	ExampleType
Japan	Honda	Blue	1980	Economy	Yes
Japan	Toyota	Green	1970	Sports	No
Japan	Toyota	Blue	1990	Economy	Yes
USA	Chrystler	Red	1980	Economy	No
Japan	Honda	White	1980	Economy	Yes

7 Illustrate the operation of ID3 for the following training examples given in the table below. Here the target attribute is Play Tennis. Draw the complete decision tree

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

[10]	CO2	L3
[10]	CO2	L4