
1 
 

CMR  
INSTITUTE OF 
TECHNOLOGY 

 

 

 USN           

Internal Assesment Test – II 

Sub: MACHINE LEARNING Sec  A Code: 15EC834 

Date: 20/04/2019 Duration: 90 mins Max Marks:  50 Sem: VIII Branch: TCE 

Solution 

1 Draw the perceptron network with the notation. Derive an equation of gradient descent rule to minimize the 

error. 

Ans: Perceptron network [5 marks] + Derivation of gradient descent rule [5 marks] 
PERCEPTRON: 

 One type of ANN system is based on a unit called perceptron. Perceptron is a basic processing 
element. 

 It has input that may comes from the environment or may be the output of other perceptron. 
 Perceptron is also known as single layer ANN. 
 Perceptron takes a vector of real-valued input, calculates a linear combination of these inputs, the 

output a 1 if the result is greater than some threshold and -1 otherwise. 
 

 
Figure: A Perceptron  

 The inputs are 𝑥1, 𝑥2 … . 𝑥𝑛 , the output is 𝑂(𝑥1, 𝑥2 … . 𝑥𝑛). Computed by the perceptron is  

𝑂(𝑥1, 𝑥2 … .𝑥𝑛) = {
1   𝑖𝑓 𝜔0 + 𝜔1𝑥1 + 𝜔2𝑥2 + ⋯. +𝜔𝑛𝑥𝑛   > 0 
−1                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Here 𝜔𝑖 is weight, which decides the contribution of the input to the perceptron output. 
 (−𝜔0) is the threshold, that the weighted combination of inputs 𝜔1𝑥1 + 𝜔2𝑥2 + ⋯.+𝜔𝑛𝑥𝑛 must 

surpass in order for the perceptron to output a 1. 
 The perceptron function can be written as: 

𝑂(�⃗�) = 𝑆𝑔𝑛( �⃗⃗⃗� �⃗� )         𝑤ℎ𝑒𝑟𝑒    𝑆𝑔𝑛 (𝑥) = {
1  𝑖𝑓 𝑥 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 Learning the perceptron involves choosing a value for the weight  𝜔0, 𝜔1, … .𝜔𝑛. Therefore, the 
space 𝐻 of candidate hypotheses considered in perceptron learning is the set of all possible real 
valued weight vectors. 

𝐻 = {�⃗⃗⃗� | �⃗⃗⃗�  ∈  𝑅𝑛+1} 
 Derivation of the Gradient Descent Rule: 

 The direction of steepest can be found by computing the derivative of 𝐸 with respect to 
each component of the vector  �⃗⃗⃗�. 

 This vector derivative is called gradient of 𝐸 w.r.t. �⃗⃗⃗� written as: 

∇𝐸(�⃗⃗⃗�) = [
𝜕𝐸

𝜕𝜔0
,
𝜕𝐸

𝜕𝜔1
, … .

𝜕𝐸

𝜕𝜔𝑛
] 

∇𝐸(�⃗⃗⃗�) is a vector and components are the partial derivatives of 𝐸 w.r.t. each of the 𝜔𝑖. 
 Gradient specifies the direction. The training rule for gradient descent is : 

𝜔𝑖 ← 𝜔𝑖 + ∆𝜔𝑖 
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𝑊ℎ𝑒𝑟𝑒    ∆𝜔𝑖 = −𝑛∇𝐸(�⃗⃗⃗�) 
Here 𝑛 is the learning rate (a positive constant) indicates step size. 
-ve sign is present as we want to move the weight vector in the direction that minimizes  𝐸. 

 Hence the training rule can be written in its component form as: 
𝜔𝑖 ← 𝜔𝑖 + ∆𝜔𝑖    − − − (1) 

∆𝜔𝑖 = −𝑛
𝜕𝐸

𝜕𝜔𝑖
 − − − −(2) 

As we know   𝐸(�⃗⃗⃗�) =
1

2
∑(𝑡𝑑 − 𝑜𝑑)2

𝑑 ∈𝐷

 

 How to calculate the gradient at each step? 
𝜕𝐸

𝜕𝜔𝑖
=

𝜕

𝜕𝜔𝑖

1

2
∑(𝑡𝑑 − 𝑜𝑑)2

𝑑 ∈𝐷

=
1

2
∑

𝜕

𝜕𝜔𝑖

(𝑡𝑑 − 𝑜𝑑)2

𝑑 ∈𝐷

 

=
1

2
∑ 2(𝑡𝑑 − 𝑜𝑑)

𝑑 ∈𝐷

𝜕

𝜕𝜔𝑖

(𝑡𝑑 − 𝑜𝑑) 

= ∑(𝑡𝑑 − 𝑜𝑑)

𝑑 ∈𝐷

𝜕

𝜕𝜔𝑖

(𝑡𝑑 − �⃗⃗⃗� . �⃗�)                       𝑎𝑠  𝑂(�⃗�) = �⃗⃗⃗� . �⃗�  

𝜕𝐸

𝜕𝜔𝑖
= ∑(𝑡𝑑 − 𝑜𝑑)

𝑑 ∈𝐷

(−𝑥𝑖𝑑) − − − (3) 

Where 𝑥𝑖𝑑 denotes single input component 𝑥𝑖 for the training example d.  
Substituting equation (3) in equation (1) 

∆𝜔𝑖 = 𝑛 ∑(𝑡𝑑 − 𝑜𝑑)

𝑑 ∈𝐷

𝑥𝑖𝑑    − − − −(4) 

2 Write an algorithm for Back Propagation Algorithm which uses stochastic gradient descent method. Comment 
of the effect of adding momentum to the network. 

 Back Propagation Algorithm [6 marks]+ effect of adding momentum[4 marks] 
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 Adding Momentum: 

 Because Back propagation is such a widely used algorithm, many variations have been 
developed. 

 The weight update rule is altered  
∆𝜔𝑗𝑖 = 𝑛𝛿𝑗𝑥𝑗𝑖 + 𝛼∆𝜔𝑗𝑖(𝑛 − 1) 

Means the weight update on the nth iteration depends partially on the weight updated 
during (n-1)th iteration . 
Where 0 ≤ 𝛼 < 1 is a constant called momentum 

 To observe the effect of this momentum: 
 Consider a momentum less ball rolling down the error surface. The effect of 𝛼 is to 

add momentum that tends to keep the ball rolling in the same direction from one 
iterations to the next. 

 This have the effect of keeping the ball rolling through small local minima or along 
flat regions in the surface where the ball would stop if there is no momentum.  

 The 𝛼 has also the effect of gradually increasing the step size of the search in 
regions where the gradient is unchanging, hence speeding convergence. 

3(a) Explain MAP and ML hypothesis. 
 MAP [2.5 marks]+ML [2.5 marks] 

Maximum a Posteriori (MAP) Hypothesis 
 In many learning scenarios, the learner considers the most probable hypothesis ‘h’ from the 

hypothesis space ‘H’ i.e. ℎ ∈ 𝐻 , given the observed data ‘D’. Such maximum probable 
hypothesis H is called a maximum a posteriori (MAP) hypothesis. 

 We can determine the MAP hypothesis by using Bayes theorem for determining the 
posterior probability. 
ℎ𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻𝑃(ℎ|𝐷) 

ℎ𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻

𝑃(𝐷|ℎ)𝑃(ℎ)

𝑃(𝐷)
 

ℎ𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻  𝑃(𝐷|ℎ)𝑃(ℎ) 
𝑃(𝐷) can be dropped, because it is a constant independent of h. 

Maximum Likelihood (ML) Hypothesis 
 If every hypothesis in ‘H’ is equally probable i.e. P(hi) = P(hj) for all hi and hj in H. 

Then the equation can be represented as  
ℎ𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻𝑃(𝐷|ℎ) 
𝑃(𝐷|ℎ) is called likelihood of the data D given h. The hypothesis that maximizes 
𝑃(𝐷|ℎ) is called maximum likelihood (ML) hypothesis, ℎ𝑀𝐿  

3(b) Explain appropriate problems for Neural Network learning. 
 5 points [5 marks] 

ANN is appropriate for problems with the following characteristics: 
1. Instances are represented by many attribute-value pairs. 
2. The target function output may be discrete-valued, real-valued, or a vector of several real- or 

discrete-valued attributes. 
3. The training examples may contain errors. 
4. Long training times are acceptable. 
5. Fast evaluation of the learned target function may be required. 
6. The ability of humans to understand the learned target function is not important. 
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4 The following table gives the data set. Classify the following instance using Naïve Bayes Classifier: <
𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑁𝑜,𝑀𝑎𝑟𝑟𝑖𝑒𝑑 , 𝑇𝑎𝑥𝑎𝑏𝑙𝑒 𝐼𝑛𝑐𝑜𝑚𝑒 = 120𝐾 > 

Tid Refund Marital Status Taxable Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120|K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
 

 All conditional probabilities [6 marks]+Final answer [4 marks] 

𝑃(𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
3

10
 𝑃(𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

7

10
 

𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑌𝑒𝑠|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
0

3
 𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑌𝑒𝑠|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

3

7
 

𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑁𝑜|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
3

3
= 1 𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑁𝑜|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

4

7
 

𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑠𝑖𝑛𝑔𝑙𝑒|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
2

3
 𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑠𝑖𝑛𝑔𝑙𝑒|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

2

7
 

𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑀𝑎𝑟𝑟𝑖𝑒𝑑|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
0

3
 𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑀𝑎𝑟𝑟𝑖𝑒𝑑|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

4

7
 

𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝐷𝑖𝑣𝑜𝑟𝑐𝑒𝑑|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) =
1

3
 𝑃(𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝐷𝑖𝑣𝑜𝑟𝑐𝑒𝑑|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) =

1

7
 

𝐅𝐨𝐫 𝐂𝐥𝐚𝐬𝐬 =  𝑌𝑒𝑠: 
Evade Taxable Income (𝑥 − 𝜇) (𝑥𝑖 − 𝜇)2 
Yes 95K 5 25 
Yes 85K -5 25 
Yes 90K 0 0 
 ∑270𝐾  ∑50 

 
𝜇 =  

270𝐾

3
= 90𝐾 

 
𝜎2 =

50

3 − 1
= 25 

 
 
 
 
 
𝑃(𝐸𝑣𝑎𝑑𝑒 = 120𝐾|𝐸𝑣𝑎𝑑𝑒 = 𝑌𝑒𝑠) = 

1

√2𝜋𝜎2
. 𝑒

(
−1
2𝜎2)(𝑥−𝜇)2

=
1

√2𝜋 × 25
 . 𝑒

−(
(120−90)2

2×25
)
 

= 1.215 × 10−9 
 

𝐅𝐨𝐫 𝐂𝐥𝐚𝐬𝐬 = 𝑁𝑜: 
Evade Taxable Income (𝑥 − 𝜇) (𝑥𝑖 − 𝜇)2 
No 125K 15 225 
No 100K -10 100 
No 70K -40 1600 
No 120K 10 100 
No 60K -50 2500 
No 220K 110 12100 
No 75K -35 1225 
 ∑770𝐾  ∑17850 

 
𝜇 = 

770𝐾

7
= 110𝐾 

 
𝜎2 =

17850

3 − 1
= 2975 

𝑃(𝐸𝑣𝑎𝑑𝑒 = 120𝐾|𝐸𝑣𝑎𝑑𝑒 = 𝑁𝑜) = 

1

√2𝜋𝜎2
. 𝑒

(
−1
2𝜎2)(𝑥−𝜇)2

=
1

√2𝜋 × 2975
 . 𝑒

−(
(120−110)2

2×2975
)
 

= 0.0072 

𝐅𝐨𝐫 𝐂𝐥𝐚𝐬𝐬 =  𝑌𝑒𝑠: 
𝑃(𝑌𝑒𝑠). 𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑁𝑜|𝑌𝑒𝑠). 𝑃(𝑀𝑎𝑟𝑟𝑖𝑒𝑑|𝑌𝑒𝑠). 𝑃(𝐼𝑛𝑐𝑜𝑚𝑒 = 120𝐾|𝑌𝑒𝑠) 

= (
3

10
) × (

3

3
) × (

0

3
) × (1.215 × 10−9) = 0 

𝐅𝐨𝐫 𝐂𝐥𝐚𝐬𝐬 =  𝑁𝑜: 
𝑃(𝑁𝑜). 𝑃(𝑅𝑒𝑓𝑢𝑛𝑑 = 𝑁𝑜|𝑁𝑜). 𝑃(𝑀𝑎𝑟𝑟𝑖𝑒𝑑|𝑁𝑜). 𝑃(𝐼𝑛𝑐𝑜𝑚𝑒 = 120𝐾|𝑁𝑜) 
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= (
7

10
) × (

4

7
) × (

4

7
) × (0.0072) = 0.001645 

Hence the new instance will be classified as No 
5 Describe the maximum likelihood hypothesis for predicting probabilities. 
 Maximum likelihood for predicting probability [5 marks]+ Gradient search to maximize likelihood [5 marks] 

Maximum Likelihood Hypothesis for predicting Probabilities: 
 We know, maximum likelihood hypothesis is that, which minimizes the sum of squared errors over 

the training examples. 
 Learning to predict probabilities, commonly used in neural network we need to do some settings 

such as : 
a) We wish to learn Non-deterministic function  𝑓 ∶ 𝑋 → {0,1} 
b) We might wish to learn a neural network (or other function approximator) whose output  is 

the probability i.e. target function  
𝑓′ ∶ 𝑋 → [0,1]                      𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑓′(𝑥) = 𝑃(𝑓(𝑥) = 1) 

 What criteria should we optimize in order to find a maximum likelihood hypothesis for 
𝒇 ′  in this setting? 

i. First obtain the expression for 𝑃(𝐷|ℎ) 
ii. Assuming training data 𝐷 is of the form < < 𝑥1, 𝑑1 >, < 𝑥2, 𝑑2 >,…… < 𝑥𝑚, 𝑑𝑚 > > where 

𝑑𝑖  is the observed 0 𝑜𝑟 1 values for 𝑓(𝑥). 
iii. Treating both 𝑥𝑖  𝑎𝑛𝑑 𝑑𝑖 as random variables and assuming that each training example is 

drawn independently we can write 𝑃(𝐷|ℎ) as  

𝑃(𝐷|ℎ) = ∏𝑃(𝑥𝑖, 𝑑𝑖|ℎ)

𝑚

𝑖=1

    

Applying the product rule  

𝑃(𝐷|ℎ) = ∏𝑃(𝑥𝑖, 𝑑𝑖|ℎ)

𝑚

𝑖=1

= ∏𝑃(𝑑𝑖|ℎ, 𝑥𝑖)

𝑚

𝑖=1

. 𝑃(𝑥𝑖) − − − − − (1) 

The probability 𝑃(𝑑𝑖|ℎ, 𝑥𝑖) = 

𝑃(𝑑𝑖|ℎ, 𝑥𝑖) = {
ℎ(𝑥𝑖)                 𝑖𝑓   𝑑𝑖 = 1

1 − ℎ(𝑥𝑖)         𝑖𝑓 𝑑𝑖 = 0
  − − − − − − − − − −(2) 

Re-express it in a more mathematically manipulable form as: 
𝑃(𝑑𝑖|ℎ, 𝑥𝑖) =  ℎ(𝑥𝑖)

𝑑𝑖  (1− ℎ(𝑥𝑖) )
1−𝑑𝑖  − − − − − − − − − −(3) 

Putting equation (3) in equation (1) 

𝑃(𝐷|ℎ) =  ∏ℎ(𝑥𝑖)
𝑑𝑖 (1 − ℎ(𝑥𝑖) )

1−𝑑𝑖

𝑚

𝑖=1

. 𝑃(𝑥𝑖) 

Hence the maximum likelihood hypothesis can be expressed as  

ℎ𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ ∈ 𝐻 ∏ℎ(𝑥𝑖)
𝑑𝑖  (1 − ℎ(𝑥𝑖) )

1−𝑑𝑖

𝑚

𝑖=1

. 𝑃(𝑥𝑖) 

As 𝑃(𝑥𝑖) is independent of hypothesis ‘h’. Hence the maximum likelihood hypothesis can be 
expressed as: 

ℎ𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ ∈ 𝐻 ∏ℎ(𝑥𝑖)
𝑑𝑖  (1 − ℎ(𝑥𝑖) )

1−𝑑𝑖

𝑚

𝑖=1

   

This expression can be seen as a generalization of binomial distribution. 
It is easier to work with the log of the Likelihood. 

ℎ𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ ∈ 𝐻 ∑𝑑𝑖 ln ℎ(𝑥𝑖)

𝑚

𝑖=1

+ (1 − 𝑑𝑖) ln(1 − ℎ(𝑥𝑖) ) − − − −(4) 

The equation (4) must be maximized in order to obtain the maximum likelihood hypothesis. 
 Gradient Search to maximize likelihood in a neural network: 

a) Let  𝐺(ℎ,𝐷) has to be maximized to provide maximum likelihood hypothesis. 
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b) The gradient of 𝐺(ℎ,𝐷) is given by the vector of partial derivative 𝐺(ℎ, 𝐷). 
c) The partial derivative of 𝐺(ℎ,𝐷) with respect to weight 𝑤𝑗𝑘  from input k to unit j. 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑

𝜕𝐺(ℎ,𝐷)

𝜕ℎ(𝑥𝑖)
×

𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘

𝑚

𝑖=1

 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑

𝜕

𝜕ℎ(𝑥𝑖)

𝑚

𝑖=1

[𝑑𝑖 ln ℎ(𝑥𝑖) + (1 − 𝑑𝑖) ln(1 − ℎ(𝑥𝑖) )] ×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝜕

𝜕ℎ(𝑥𝑖)
[𝑑𝑖 ln ℎ(𝑥𝑖)]+

𝜕

𝜕ℎ(𝑥𝑖)
[(1 − 𝑑𝑖) ln(1 − ℎ(𝑥𝑖) )]}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖

ℎ(𝑥𝑖)
+ (1 − 𝑑𝑖) × (

−1

1 − ℎ(𝑥𝑖)
)}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖

ℎ(𝑥𝑖)
 −  

(1 − 𝑑𝑖)

1 − ℎ(𝑥𝑖)
}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖(1 − ℎ(𝑥𝑖)) − (1 − 𝑑𝑖)ℎ(𝑥𝑖)

ℎ(𝑥𝑖)(1− ℎ(𝑥𝑖))
}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖 − 𝑑𝑖ℎ(𝑥𝑖) − ℎ(𝑥𝑖) + ℎ(𝑥𝑖)𝑑𝑖

ℎ(𝑥𝑖)(1 − ℎ(𝑥𝑖))
}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖 − ℎ(𝑥𝑖)

ℎ(𝑥𝑖)(1− ℎ(𝑥𝑖))
}

𝑚

𝑖=1

×
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
 

Suppose the neural network is constructed from a single layer sigmoid unit then: 
𝜕ℎ(𝑥𝑖)

𝜕𝑤𝑗𝑘
= 

𝜕ℎ(𝑥𝑖)

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑘
= ℎ(𝑥𝑖) (1 − ℎ(𝑥𝑖)).𝑥𝑖𝑗𝑘 

𝑊ℎ𝑒𝑟𝑒 𝑥𝑖𝑗𝑘  𝑖𝑠 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 𝑢𝑛𝑖𝑡 𝑡𝑜 𝑢𝑛𝑖𝑡 𝑗 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 

𝐻𝑒𝑛𝑐𝑒 
𝜕𝐺(ℎ, 𝐷)

𝜕𝑤𝑗𝑘
= ∑{

𝑑𝑖 − ℎ(𝑥𝑖)

ℎ(𝑥𝑖)(1 − ℎ(𝑥𝑖))
}

𝑚

𝑖=1

× ℎ(𝑥𝑖) (1− ℎ(𝑥𝑖)). 𝑥𝑖𝑗𝑘 

𝜕𝐺(ℎ,𝐷)

𝜕𝑤𝑗𝑘
= ∑(𝑑𝑖 − ℎ(𝑥𝑖))

𝑚

𝑖=1

𝑥𝑖𝑗𝑘 

As we seek to maximize rather than minimize 𝑃(𝐷|ℎ), we perform gradient ascent rather than 
gradient descent search. 
The weight vector is adjusted as 𝑤𝑗𝑘 ← 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘 

∆𝑤𝑗𝑘 = 𝑛∑(𝑑𝑖 − ℎ(𝑥𝑖))

𝑚

𝑖=1

𝑥𝑖𝑗𝑘 

Where  𝑛 is a small +ve constant that determines the step size of the gradient ascent search. 
6(a) Write the short note on features of Bayesian Learning method. 

 5 points  [5 marks] 
Features of Bayesian Learning Methods: 

1) Each observed training example can incrementally decrease or increase the estimated probability 
that a hypothesis is correct. It gives more flexibility that those algorithm which eliminates a 
hypothesis if it is found inconsistent with single example. 

2) Prior knowledge can be combined with observed data, which helps to determine the probability of 
a hypothesis. 

3) Bayesian method makes probabilistic predictions. 
4) New instance can be classified by combining the prediction of multiple hypotheses, weighted by 

their probabilities. 
5) Though Bayesian method is computationally intractable (difficult to solve), it provides a standard 
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of optimal decision making against other method. 
6(b) Consider a medical diagnosis problem here 2 alternative hypothesis are present i.e. the patient has a 

particular form of cancer and the patient does not with the prior knowledge that, over the entire population 
only 0.8% have this disease. The lab test has the indicator  of the disease as follows: correct positive in 98% of 
the cases and correct negative result in 97% of the case. If a new patient for whom the lab test returns a 
positive result should we diagnose the patient as having cancer or not? 

 All probabilities [3 marks]+solution [2 marks] 
The above situation can be summarized as: 
𝑃(𝐶𝑎𝑛𝑐𝑒𝑟) = 0.08                     𝑃(¬𝐶𝑎𝑛𝑐𝑒𝑟) = 0.992 
𝑃(+|𝐶𝑎𝑛𝑐𝑒𝑟) = 0.98               𝑃(−|𝐶𝑎𝑛𝑐𝑒𝑟) = 0.02 
𝑃(+|¬𝐶𝑎𝑛𝑐𝑒𝑟) = 0.03            𝑃(−|¬𝐶𝑎𝑛𝑐𝑒𝑟) = 0.97 
The maximum a posteriori hypothesis (MAP) can be found as: 

𝑃(? |+) =

[
 
 
 
 𝑃(𝐶𝑎𝑛𝑐𝑒𝑟| +) =

𝑃(+|𝐶𝑎𝑛𝑐𝑒𝑟).𝑃(𝐶𝑎𝑛𝑐𝑒𝑟)

𝑃(+)

𝑃(¬𝐶𝑎𝑛𝑒𝑟|+) =
𝑃(+|¬𝐶𝑎𝑛𝑐𝑒𝑟).𝑃(¬𝐶𝑎𝑛𝑐𝑒𝑟)

𝑃(+)

 

𝑃(+) = 𝑃(+|𝐶𝑎𝑛𝑐𝑒𝑟). 𝑃(𝐶𝑎𝑛𝑐𝑒𝑟) +  𝑃(+|¬𝐶𝑎𝑛𝑐𝑒𝑟).𝑃(¬𝐶𝑎𝑛𝑐𝑒𝑟) 
𝑃(+) = 0.98 × 0.008 + 0.03 × 0.992 = 0.00784 + 0.02976 = 0.0376 
𝑃(+|𝐶𝑎𝑛𝑐𝑒𝑟).𝑃(𝐶𝑎𝑛𝑐𝑒𝑟)

𝑃(+)
=

0.98 × 0.008

0.0376
= 0.21 

𝑃(+|¬𝐶𝑎𝑛𝑐𝑒𝑟).𝑃(¬𝐶𝑎𝑛𝑐𝑒𝑟)

𝑃(+)
=

0.03 × 0.992

0.0376
= 0.79 

Hence the new patient may have the lab test as positive, but it belongs to the class of non-cancer. 

 
7 Explain K-Nearest Neighbor learning algorithm with example. 

Ans K-nearest Neighbor Definition: [2 marks] 
Algorithm: [4 marks] 
Example: [4 marks] 

K-Nearest Neighbor Learning: 
 The most basic instance based method is the K-nearest neighbor algorithm. 

 We have observed in Decision tree learning or artificial neural network algorithm, we have designed a 

model in the training phase. I.e. the model is learned during training phase, when new instance comes, 

it gets classified/predicted as per the model. 

 In K-nearest neighbor algorithm, the processing won’t happen till the new instance comes. 

Hence the distance between 𝑥𝑖   𝑎𝑛𝑑 𝑥𝑗 for the 𝑟𝑡ℎ attribute is defined as: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑[𝑎𝑟(𝑥𝑖) − 𝑎𝑟(𝑥𝑗)]
2

𝑛

𝑟=1

 

where the instance  𝑥  is described as: 
< 𝑎1(𝑥), 𝑎2(𝑥),…… . 𝑎𝑛(𝑥) > 
𝑎𝑟(𝑥)  → denotes the rth  attribute of instance  𝑥 

 In nearest neighbor, the target function may be either discrete valued or real valued. 

K-Nearest Neighbor Algorithm: 
Training Algorithm: 

 For each training example < 𝑥, 𝑓(𝑥) > add the example to the list training examples. 
Classification Algorithm: 

 Given a query instance 𝑥𝑞 to be classified, 

 Let 𝑥1 …𝑥𝑘 denote the 𝑘 instances from training examples they are nearest to 𝑥𝑞 

 Return 



8 
 

𝑓(𝑥𝑞) ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑣 ∈𝑉 ∑𝛿(𝑣, 𝑓(𝑥𝑖))

𝑘

𝑖=1

 

𝑊ℎ𝑒𝑟𝑒    𝛿(𝑎, 𝑏) = {
1  𝑓𝑜𝑟 𝑎 = 𝑏
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Regression Algorithm: 
 Return 

                               𝑓(𝑥𝑞) =
∑ 𝑓(𝑥𝑖)

𝑘
𝑖=1

𝑘
 

Example: 

X1-Acidic 
Durability(secon

ds) 

X2-
Stength 
(kg/squa

re 
meter) 

Y = 
Classificati

on 

7 7 Bad 

7 4 Bad 

3 4 Good 

1 4 Good 

Classify the new instance with   𝑋1 = 3   𝑎𝑛𝑑   𝑋2 =  7    𝑖𝑓 𝑡ℎ𝑒 𝑘 = 3. 

 

X1-Acidic 
Durability
(seconds) 

X2-Stength 
(kg/square 

meter) 

Y = 
Classification 

Euclidean 
Distance 

7 7 Bad 4 

7 4 Bad 5 

3 4 Good 3 

1 4 Good 3.6055127 

3 7 
 

 

Hence the new instance with   𝑋1 = 3   𝑎𝑛𝑑   𝑋2 =  7   will be classified as a Good Acid. 
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