

Internal Assesment Test - II

Sub:	Sub: MACHINE LEARNING		Sec	e A				Code:	15EC834
Date:	20/04/2019	Duration:	90 mins	Max Marks:	50	Sem:	VIII	Branch:	TCE

Solution

1 Draw the perceptron network with the notation. Derive an equation of gradient descent rule to minimize the error

Ans: Perceptron network [5 marks] + Derivation of gradient descent rule [5 marks] PERCEPTRON:

- One type of ANN system is based on a unit called perceptron. Perceptron is a basic processing element.
- It has input that may comes from the environment or may be the output of other perceptron.
- Perceptron is also known as single layer ANN.
- Perceptron takes a vector of real-valued input, calculates a linear combination of these inputs, the output a 1 if the result is greater than some threshold and -1 otherwise.

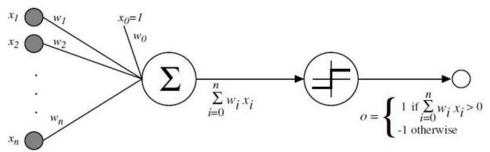


Figure: A Perceptron

- The inputs are x_1, x_2, \dots, x_n , the output is $O(x_1, x_2, \dots, x_n)$. Computed by the perceptron is $O(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if } \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \dots + \omega_n x_n > 0 \\ -1 & \text{otherwise} \end{cases}$
- Here ω_i is weight, which decides the contribution of the input to the perceptron output.
- $(-\omega_0)$ is the threshold, that the weighted combination of inputs $\omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_n x_n$ must surpass in order for the perceptron to output a 1.
- The perceptron function can be written as:

$$O(\vec{x}) = Sgn(\vec{\omega}\vec{x})$$
 where $Sgn(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{otherwise} \end{cases}$

• Learning the perceptron involves choosing a value for the weight $\omega_0, \omega_1, \dots \omega_n$. Therefore, the space H of candidate hypotheses considered in perceptron learning is the set of all possible real valued weight vectors.

$$H = \{ \vec{\omega} \mid \vec{\omega} \in R^{n+1} \}$$

- Derivation of the Gradient Descent Rule:
 - The direction of steepest can be found by computing the derivative of E with respect to each component of the vector $\vec{\omega}$.
 - \triangleright This vector derivative is called gradient of *E* w.r.t. $\vec{\omega}$ written as:

$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n} \right]$$

 $\nabla E(\vec{\omega})$ is a vector and components are the partial derivatives of E w.r.t. each of the ω_i .

 \triangleright Gradient specifies the direction. The training rule for gradient descent is : $ω_i ← ω_i + Δω_i$

Where $\Delta\omega_i = -n\nabla E(\vec{\omega})$

Here n is the learning rate (a positive constant) indicates step size.

-ve sign is present as we want to move the weight vector in the direction that minimizes E.

➤ Hence the training rule can be written in its component form as:

$$\omega_i \leftarrow \omega_i + \Delta \omega_i \quad ---(1)$$

$$\Delta\omega_i = -n\frac{\partial E}{\partial\omega_i} - - - -(2)$$

As we know $E(\vec{\omega}) = \frac{1}{2} \sum_{i=1}^{n} (t_d - o_d)^2$

How to calculate the gradient at each step?
$$\frac{\partial E}{\partial \omega_{i}} = \frac{\partial}{\partial \omega_{i}} \frac{1}{2} \sum_{d \in D} (t_{d} - o_{d})^{2} = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial \omega_{i}} (t_{d} - o_{d})^{2}$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_{d} - o_{d}) \frac{\partial}{\partial \omega_{i}} (t_{d} - o_{d})$$

$$= \sum_{d \in D} (t_{d} - o_{d}) \frac{\partial}{\partial \omega_{i}} (t_{d} - \vec{\omega} \cdot \vec{x}) \qquad \text{as } O(\vec{x}) = \vec{\omega} \cdot \vec{x}$$

$$\frac{\partial E}{\partial \omega_{i}} = \sum_{d \in D} (t_{d} - o_{d}) (-x_{id}) - - - (3)$$

Where x_{id} denotes single input component x_i for the training example d.

Substituting equation (3) in equation (1)

$$\Delta\omega_i = n \sum_{d \in D} (t_d - o_d) x_{id} \quad ----(4)$$

2 Write an algorithm for Back Propagation Algorithm which uses stochastic gradient descent method. Comment of the effect of adding momentum to the network.

Back Propagation Algorithm [6 marks]+ effect of adding momentum[4 marks]

BACKPROPAGATION(training_examples, η , n_{in} , n_{out} , n_{hidden})

Each training example is a pair of the form (\vec{x}, \vec{t}) , where \vec{x} is the vector of network input values, and \vec{t} is the vector of target network output values.

 η is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{hidden} the number of units in the hidden layer, and nout the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} .

- Create a feed-forward network with nin inputs, nhidden units, and nout output units.
- Initialize all network weights to small random numbers (e.g., between -.05 and .05).
- Until the termination condition is met, Do
 - For each (\vec{x}, \vec{t}) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance \vec{x} to the network and compute the output o_u of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k) \tag{T4.3}$$

For each hidden unit h, calculate its error term δh

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$
 (T4.4)

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

where

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji} \tag{T4.5}$$

• Adding Momentum:

- > Because Back propagation is such a widely used algorithm, many variations have been developed.
- > The weight update rule is altered

$$\Delta\omega_{ii} = n\delta_i x_{ii} + \alpha\Delta\omega_{ii}(n-1)$$

Means the weight update on the n^{th} iteration depends partially on the weight updated during $(n-1)^{th}$ iteration.

Where $0 \le \alpha < 1$ is a constant called momentum

- ➤ To observe the effect of this momentum:
 - Consider a momentum less ball rolling down the error surface. The effect of α is to add momentum that tends to keep the ball rolling in the same direction from one iterations to the next.
 - This have the effect of keeping the ball rolling through small local minima or along flat regions in the surface where the ball would stop if there is no momentum.
 - The α has also the effect of gradually increasing the step size of the search in regions where the gradient is unchanging, hence speeding convergence.

3(a) Explain MAP and ML hypothesis.

MAP [2.5 marks]+ML [2.5 marks]

Maximum a Posteriori (MAP) Hypothesis

- In many learning scenarios, the learner considers the most probable hypothesis 'h' from the hypothesis space 'H' i.e. $h \in H$, given the observed data 'D'. Such maximum probable hypothesis H is called a maximum a posteriori (MAP) hypothesis.
- We can determine the MAP hypothesis by using Bayes theorem for determining the posterior probability.

$$h_{MAP} = argmax_{h \in H} P(h|D)$$

$$h_{MAP} = argmax_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

 $h_{MAP} = argmax_{h \in H} P(D|h)P(h)$

P(D) can be dropped, because it is a constant independent of h.

Maximum Likelihood (ML) Hypothesis

• If every hypothesis in 'H' is equally probable i.e. P(hi) = P(hj) for all hi and hj in H. Then the equation can be represented as

 $h_{ML} = argmax_{h \in H} P(D|h)$

P(D|h) is called likelihood of the data D given h. The hypothesis that maximizes P(D|h) is called maximum likelihood (ML) hypothesis, h_{MI}

3(b) Explain appropriate problems for Neural Network learning.

5 points [5 marks]

ANN is appropriate for problems with the following characteristics:

- 1. Instances are represented by many attribute-value pairs.
- 2. The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.
- 3. The training examples may contain errors.
- 4. Long training times are acceptable.
- 5. Fast evaluation of the learned target function may be required.
- 6. The ability of humans to understand the learned target function is not important.

4 The following table gives the data set. Classify the following instance using Naïve Bayes Classifier: < Refund = No, Married, Taxable Income = 120K >

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120 K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

All conditional probabilities [6 marks]+Final answer [4 marks]

$$P(Evade = Yes) = \frac{3}{10}$$

$$P(Refund = Yes|Evade = Yes) = \frac{0}{3}$$

$$P(Refund = Yes | Evade = Yes) = \frac{0}{3}$$

$$P(Refund = No | Evade = Yes) = \frac{3}{3} = 1$$

$$P(MaritalStatus = single|Evade = Yes) = \frac{2}{3}$$

$$P(MaritalStatus = Married|Evade = Yes) = \frac{0}{3}$$

$$P(MaritalStatus = Divorced|Evade = Yes) = \frac{1}{3}$$

 $P(Evade = No) = \frac{7}{10}$

$$P(Refund = Yes|Evade = No) = \frac{3}{7}$$

 $P(Refund = No|Evade = No) = \frac{4}{7}$

$$P(Refund = No|Evade = No) = \frac{4}{7}$$

$$P(MaritalStatus = single|Evade = No) = \frac{2}{7}$$

$$P(MaritalStatus = Married|Evade = No) = \frac{4}{7}$$

$$P(MaritalStatus = Divorced|Evade = No) = \frac{1}{5}$$

For Class = $Y \rho s$

rui Cias	55 – 1 es:		
Evade	Taxable Income	$(x-\mu)$	$(x_i - \mu)^2$
Yes	95K	5	25
Yes	85K	-5	25
Yes	90K	0	0
	$\sum_{\mu = \frac{270K}{3} = 90K} 270K$		$\sum_{\sigma^2 = \frac{50}{3-1} = 25}$

For (Class =	No:
-------	---------	-----

Evade	Taxable Income	$(x-\mu)$	$(x_i -$
No	125K	15	22
No	100K	-10	10
No	70K	-40	16
No	120K	10	10
No	60K	-50	25
No	220K	110	121
No	75K	-35	12
	∑770 <i>K</i>		$\sum_{i=1}^{n}$
	$\mu = \frac{770K}{2}$		$\sigma^2 = \frac{17}{2}$

$$P(Evade = 120K|Evade = Yes) =$$

$$\begin{split} &P(Evade = 120K | Evade = Yes) = \\ &\frac{1}{\sqrt{2\pi\sigma^2}}.e^{\left(\frac{-1}{2\sigma^2}\right)(x-\mu)^2} = \frac{1}{\sqrt{2\pi\times25}}.e^{-\left(\frac{(120-90)^2}{2\times25}\right)} \\ &= 1.215\times10^{-9} \end{split}$$

$$P(Evade = 120K | Evade = No) = 0 = \frac{3}{3}$$

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(\frac{-1}{2\sigma^2}\right)(x-\mu)^2} = \frac{1}{\sqrt{2\pi\times2975}} e^{-\left(\frac{(120-110)^2}{2\times2975}\right)^2} = 0.0072$$

For Class = Yes:

P(Yes).P(Refund = No|Yes).P(Married|Yes).P(Income = 120K|Yes)

$$= \left(\frac{3}{10}\right) \times \left(\frac{3}{3}\right) \times \left(\frac{0}{3}\right) \times (1.215 \times 10^{-9}) = 0$$

P(No).P(Refund = No|No).P(Married|No).P(Income = 120K|No)

$$=\left(\frac{7}{10}\right) \times \left(\frac{4}{7}\right) \times \left(\frac{4}{7}\right) \times (0.0072) = 0.001645$$

Hence the new instance will be classified as No

Describe the maximum likelihood hypothesis for predicting probabilities. 5

Maximum likelihood for predicting probability [5 marks] + Gradient search to maximize likelihood [5 marks] Maximum Likelihood Hypothesis for predicting Probabilities:

- We know, maximum likelihood hypothesis is that, which minimizes the sum of squared errors over the training examples.
- Learning to predict probabilities, commonly used in neural network we need to do some settings such as:
 - a) We wish to learn Non-deterministic function $f: X \to \{0,1\}$
 - b) We might wish to learn a neural network (or other function approximator) whose output is the probability i.e. target function

$$f': X \to [0,1]$$
 such that $f'(x) = P(f(x) = 1)$

What criteria should we optimize in order to find a maximum likelihood hypothesis for f' in this setting?

- First obtain the expression for P(D|h)
- ii. Assuming training data *D* is of the form $<< x_1, d_1>, < x_2, d_2>, \dots < x_m, d_m>>$ where d_i is the observed 0 or 1 values for f(x).
- Treating both x_i and d_i as random variables and assuming that each training example is iii. drawn independently we can write P(D|h) as

$$P(D|h) = \prod_{i=1}^{m} P(x_i, d_i|h)$$

Applying the product rule
$$P(D|h) = \prod_{i=1}^{m} P(x_i, d_i|h)$$
Applying the product rule
$$P(D|h) = \prod_{i=1}^{m} P(x_i, d_i|h) = \prod_{i=1}^{m} P(d_i|h, x_i) \cdot P(x_i) - - - - - (1)$$
The probability $P(d_i|h, x_i) = P(d_i|h, x_i) = \begin{cases} h(x_i) & \text{if } d_i = 1 \\ 1 - h(x_i) & \text{if } d_i = 0 \end{cases}$
Re-express it in a more mathematically manipulable form as:

$$P(d_i|h,x_i) = \begin{cases} h(x_i) & \text{if } d_i = 1\\ 1 - h(x_i) & \text{if } d_i = 0 \end{cases} ------(2)$$

Re-express it in a more mathematically manipulable form as:

Putting equation (3) in equation (1)

$$P(D|h) = \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i} . P(x_i)$$

Hence the maximum likelihood hypothesis can be expressed as

hence the maximum likelihood hypothesis can be expined
$$h_{ML} = argmax_{h \in H} \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i} . P(x_i)$$

As $P(x_i)$ is independent of hypothesis 'h'. Hence the maximum likelihood hypothesis can be expressed as:

$$h_{ML} = argmax_{h \in H} \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1-d_i}$$

This expression can be seen as a generalization of binomial distribution.

It is easier to work with the log of the Likelihood.

$$h_{ML} = argmax_{h \in H} \sum_{i=1}^{m} d_i \ln h(x_i) + (1 - d_i) \ln(1 - h(x_i)) - - - - (4)$$

The equation (4) must be maximized in order to obtain the maximum likelihood hypothesis.

Gradient Search to maximize likelihood in a neural network:

a) Let G(h, D) has to be maximized to provide maximum likelihood hypothesis.

- b) The gradient of G(h, D) is given by the vector of partial derivative G(h, D).
- c) The partial derivative of G(h, D) with respect to weight w_{jk} from input k to unit j.

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \frac{\partial G(h,D)}{\partial h(x_i)} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \frac{\partial}{\partial h(x_i)} [d_i \ln h(x_i) + (1-d_i) \ln(1-h(x_i))] \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{\partial}{\partial h(x_i)} [d_i \ln h(x_i)] + \frac{\partial}{\partial h(x_i)} [(1-d_i) \ln(1-h(x_i))] \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i}{h(x_i)} + (1-d_i) \times \left(\frac{-1}{1-h(x_i)}\right) \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i}{h(x_i)} - \frac{(1-d_i)}{1-h(x_i)} \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i(1-h(x_i)) - (1-d_i)h(x_i)}{h(x_i)(1-h(x_i))} \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i - d_i h(x_i) - h(x_i) + h(x_i) d_i}{h(x_i)(1-h(x_i))} \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

$$\frac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i - d_i h(x_i)}{h(x_i)(1-h(x_i))} \right\} \times \frac{\partial h(x_i)}{\partial w_{jk}}$$

Suppose the neural network is constructed from a single layer sigmoid unit then:

$$\frac{\partial h(x_i)}{\partial w_{jk}} = \frac{\partial h(x_i)}{\partial net_j} \times \frac{\partial net_j}{\partial w_{jk}} = h(x_i) \left(1 - h(x_i)\right) \cdot x_{ijk}$$

Where x_{ijk} is the kth input unit to unit j for ith training example

Hence
$$\frac{\partial G(h, D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left\{ \frac{d_i - h(x_i)}{h(x_i)(1 - h(x_i))} \right\} \times h(x_i) \left(1 - h(x_i)\right). x_{ijk}$$
$$\frac{\partial G(h, D)}{\partial w_{jk}} = \sum_{i=1}^{m} \left(d_i - h(x_i)\right) x_{ijk}$$

As we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather than gradient descent search.

The weight vector is adjusted as $w_{jk} \leftarrow w_{jk} + \Delta w_{jk}$

$$\Delta w_{jk} = n \sum_{i=1}^{m} (d_i - h(x_i)) x_{ijk}$$

Where n is a small +ve constant that determines the step size of the gradient ascent search.

6(a) Write the short note on features of Bayesian Learning method.

5 points [5 marks]

Features of Bayesian Learning Methods:

- 1) Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. It gives more flexibility that those algorithm which eliminates a hypothesis if it is found inconsistent with single example.
- 2) Prior knowledge can be combined with observed data, which helps to determine the probability of a hypothesis.
- 3) Bayesian method makes probabilistic predictions.
- 4) New instance can be classified by combining the prediction of multiple hypotheses, weighted by their probabilities.
- 5) Though Bayesian method is computationally intractable (difficult to solve), it provides a standard

of optimal decision making against other method.

Consider a medical diagnosis problem here 2 alternative hypothesis are present i.e. the patient has a 6(b) particular form of cancer and the patient does not with the prior knowledge that, over the entire population only 0.8% have this disease. The lab test has the indicator of the disease as follows: correct positive in 98% of the cases and correct negative result in 97% of the case. If a new patient for whom the lab test returns a positive result should we diagnose the patient as having cancer or not?

All probabilities [3 marks]+solution [2 marks]

The above situation can be summarized as:

$$P(Cancer) = 0.08$$
 $P(\neg Cancer) = 0.992$ $P(+|Cancer) = 0.98$ $P(-|Cancer| = 0.02$ $P(+|\neg Cancer| = 0.03$ $P(-|\neg Cancer| = 0.97$

The maximum a posteriori hypothesis (MAP) can be found as:

$$P(?|+) = \begin{bmatrix} P(-|Cancer| +) = \frac{P(+|Cancer| \cdot P(Cancer) - P(Cancer))}{P(+)} \\ P(-|Cancer| +) = \frac{P(+|-|Cancer| \cdot P(-|Cancer|) - P(-|Cancer|)}{P(+)} \\ P(+) = P(+|Cancer| \cdot P(Cancer) + P(+|-|Cancer| \cdot P(-|Cancer|) - P($$

$$\frac{P(+|Cancer|) \cdot P(Cancer)}{P(+)} = \frac{0.98 \times 0.008}{0.0376} = 0.21$$

$$\frac{P(+|\neg Cancer|) \cdot P(\neg Cancer)}{P(+)} = \frac{0.03 \times 0.992}{0.0376} = 0.79$$

Hence the new patient may have the lab test as positive, but it belongs to the class of non-cancer.

Explain K-Nearest Neighbor learning algorithm with example.

7 Ans

K-nearest Neighbor Definition: [2 marks]

Algorithm: [4 marks] Example: [4 marks]

K-Nearest Neighbor Learning:

- The most basic instance based method is the K-nearest neighbor algorithm.
- > We have observed in Decision tree learning or artificial neural network algorithm, we have designed a model in the training phase. I.e. the model is learned during training phase, when new instance comes, it gets classified/predicted as per the model.
- > In K-nearest neighbor algorithm, the processing won't happen till the new instance comes.

Hence the distance between
$$x_i$$
 and x_j for the r^{th} attribute is defined as:
$$d\big(x_i,x_j\big) = \sqrt{\sum_{r=1}^n \big[a_r(x_i) - a_r(x_j)\big]^2}$$

where the instance x is described as:

$$< a_1(x), a_2(x), \dots a_n(x) >$$

 $a_r(x) \rightarrow$ denotes the rth attribute of instance x

> In nearest neighbor, the target function may be either discrete valued or real valued.

K-Nearest Neighbor Algorithm:

Training Algorithm:

• For each training example $\langle x, f(x) \rangle$ add the example to the list training examples.

Classification Algorithm:

- Given a query instance x_q to be classified,
 - Let $x_1 \dots x_k$ denote the k instances from training examples they are nearest to x_a
 - Return

$$\hat{f}(x_q) \leftarrow argmax_{v \in V} \sum_{i=1}^k \delta(v, f(x_i))$$

$$Where \quad \delta(a, b) = \begin{cases} 1 & \text{for } a = b \\ 0 & \text{otherwise} \end{cases}$$

Regression Algorithm:

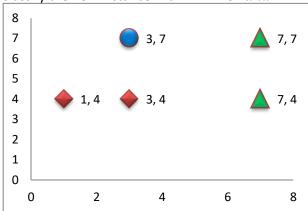
Return

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k f(x_i)}{k}$$

Example:

X1-Acidic Durability(secon ds)	X2- Stength (kg/squa re meter)	Y = Classificati on
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Classify the new instance with X1 = 3 and X2 = 7 if the k = 3.



X1-Acidic Durability (seconds)	X2-Stength (kg/square meter)	Y = Classification	Euclidean Distance
7	7	Bad	<mark>4</mark>
7	4	Bad	5
3	4	Good	<mark>3</mark>
1	4	Good	3.6055127
3	7		

Hence the new instance with X1 = 3 and X2 = 7 will be classified as a **Good Acid**.