.................

Scheme Of Evaluation
Internal Assessment Test 2 — April.2019

uuuuuuuuuuu

Sub:

Microprocessor Code:

17EC46

Date:

Sem: |1V Branch:

16/04/2019 Duration: 90mins Marks: | 50

Max ECE(A,B,C,D)/

TCE

Note:

Answer Any Five Questions

Des
cri
pti
on

Marks Distribution

Max
Marks

Explain the following string instruction: (i) CMPSB, (ii) MOVSB, (iii) LODSB, (iv) STOSB,
(v) SCASB.

CMPSB
MOVSB
LODSB
STOSB
SCASB

Solution:
CMPSB /CMPSW:

It is used to compare a byte(or word) in the data segment with a byte(or word) in the extra
segment. The offset address of the source in the data segment should be in SI. The offset address of
the destination in the extra segment should be in DI.SI and DI are incremented / decremented after
each operation depending upon the direction flag DF in the flag register. Comparison is done by
subtracting the byte (or word) in extra segment from the byte(word) in data segment. The flag bits
are affected, but the result is not stored anywhere.
Example:
CMPSB ; compare DS:[SI] with ES:[DI]
SI < SIxldepending upon DF
DI & DI+ldepending upon DF
CMPSW ; compare {DS:[SI], DS:[SI+1]} with {ES:[DI], ES:[DI+1]
SI <« SI+2depending upon DF
DI <« DI£2depending upon DF

IF DF=0, SI and DI are incremented, otherwise decremented.
MOVSB/MOVSW: Move String Byte or String Word

It is used to transfer a word/byte from data segment to extra segment. The offset address of the
source in the data segment should be in SI. The offset address of the destination in the extra
segment should be in DI. SI and DI are incremented / decremented depending upon the direction
flag.

Example:

MOVSB : ES:[DI] € DS:SI]

10M

A4 - - -

SI &SI+ldepending upon DF

DI < DI+ldepending upon DF
MOVSW ; {ES:[DI], ES:[DI+1] DS:[SI],
DS:[SI+1]} “

DI < DIx2depending upon DF

SI €« SI+2depending upon DF
IF DF=0, SI and DI are incremented, otherwise decremented.
LODSB/LODSW: Load String Byte or String Word

The LODS instruction loads the AL/AX register by the content of a string pointed by SI in the data
segment. SI - incremented / decremented after each operation depending upon the direction flag DF
in the flag register.

Example:

LODSB; AL < DS:[SI]

LODSW; AL & DS:[SI], AH DS:[SI+1],

STOSB/STOSW: Store String Byte or String Word

The STOS instruction stores the AL/AX register contents to a location of the string pointed by DI in
the extra segment.DI incremented / decremented after each operation depending upon the direction
flag DF in the flag register.

Example:
STOSB ; ES:[DI] < AL
STOSW; ES:[DI] < AL,ES:DI+1] <« AH

SCASB/SCASW: Scan String Byte or String Word

This instruction scans string of bytes or words for an operand byte or word specified in the AL or
AX register. The offset address of the string in extra segment should be in DI. DI is incremented
/decremented after each operation depending upon the direction flag DF in the flag register.
Comparison is done by subtracting the byte (or word) in extra segment from AL (AX). The flag bits
are affected, but the result is not stored anywhere.

Example:
SCASB ; compare AL with ES:[DI]

DI
< DIxldepending upon DF

SCASW; compare {AX} with {ES:[DI], ES:[DI+1]
DI <& DI£2depending upon DF

If DF=0 SI and DI are incremented, otherwise decremented.

What are assembler directives? Describe the following assembler directives with examples: (i)
DB (ii) EQU (iii) DUP (iv) ASSUME (v) ENDS.

Definition of assembler directive
Description with example

An Assembly language program is a series of statements, or lines. Which contains either
assembly language instructions or statements called directives.

Assembler Directives (pseudo-instructions) give directions to the assembler about how it
should translate the Assembly language instructions into machine code.

Assembler directives are non processor executable program instructions which help the
assembler to arrange and prepare the code better.

i. DB (Define Byte): this directive directs the assembler to reserve byte or bytes of memory
locations.

Ex:
a. numdb 25H

This statement directs the assembler to reserve 1 byte memory location for a variable or label
named num and initialize it with value 25H.

b. rank db 01h,02h,03h,04h,05h

This statement directs the assembler to reserve 5 byte memory locations for a list named rank
and initialize them with values above specified 5 values25H.

il. EQU: (Equate)
The directive EQU is used assign a label with a value or symbol. It is used to define a
constant without occupying a memory location.
Ex: count equ 5

Here equ is used to assign a label count with value 5.

1ii. DUP (duplicate):
DUP will duplicate a given number of characters.
Ex: list db 5 dup (25H)
Dup directs the assembler to duplicate value 25H in 5 memory locations starting from
label list.
iv. ASSUME: Assume Logical Segment Name:
It tells the assembler what address will be in the segment registers at execution time.
Ex: Assume CS:code, DS:Data, ES:Extra
V. ENDS:END of Segment
Indicates the end of logical segment.

\S] \S] Z’—‘

[\S]

[\S]

10M

Ex:

Data Segment ; Indicates the
;beginning of logical segment named Data

Num db 10H

Data Ends; Indicates the end of logical segment named Data.

Explain the following commands: (i) AAM (ii) JNC LABEL (iii) CALL (iv) DAA (v) CLC
and (vi) CMC.

AAM

JNC LABEL
CALL

DAA

CLC

CMC

AAM — ASCII adjust after Multiplication

The AAM instruction used after MUL instruction that multiplies two unpacked BCD operands.

After the execution of AAM instruction, the product available in AX will be converted into
unpacked BCD format.

Example:
MOV AL,’9’ ; AL=39H
MOV BL,’8’ ; BL=38H
SUB AL, 30H ; AL=09H
SUB BL, 30H ; BL=08H
MUL BL ; AX=0048H
AAM ;AX= 0702

Note: AAM instruction does the conversion by dividing AX by 10 or 0AH
AL= remainder and AH= quotient

JNC Label:

Conditional jump execution. If CY Flag=1, the sequence of execution transfers to the location
identified by LABEL.

E.g. INC L2
CALL:

CALL is unconditional Control Transfer (Branch) instruction. This instruction is used to call
subroutine (procedure) from a main program.

CALL instruction transfers the execution control to a subroutine with the intention of coming back
to the main program.

Thus in CALL , 8086 saves the address of next instruction into to the stack before branching to
subroutine. At the end of the subroutine, the control is transferred back to the main program using
the return address from the stack.

There are two types of CALL:

a. Near CALL: The subroutine called must be in the same segment (hence intra - segment).
; SP& SP-2; IP € Offset address of subroutine BINtoHEX
Far CALL: The subroutine called is in the another segment (hence inter - segment).

Here CS and IP gets new values.

o 2o o Zw

z»—a

=

10M

DAA -Decimal Adjust after Addition:
DAA works only on AL

% Ifafter an ADD or ADC instruction the lower nibble of AL is greater than 9, or if AF
=1, DAA instruction adds 06 to the lower nibble of AL.

« After adding 06, If the upper nibble of AL is greater than 9, or if CF = 1, DAA instruction
adds 6 to the upper nibble of AL.

For example, adding 29H and 18H will result in 41 H, which is incorrect as far as BCD is
concerned.

Hex BCD

AF=1
because AF =1 DAA will add 6 to lower nibble
The final result is BCD.

MNEMONIC MEANING OPERATION | Flags Affected
CLC Clear Carry Flag (CF) €0 CF
CMC Complement Carry Flag (CF) € (CF)I CF

Define interrupt and write the sequence of operations that are performed when an interrupt
is recognized using neat diagram.

e Definition of Interrupt
e Sequecne of operation
e Diagram

Interrupt breaks the normal sequence of execution, diverts execution to ISR. After execution of ISR
control returns to the main program.

Suppose an external device interrupts the CPU at the interrupt pin, either NMI or INTR of the 8086,
while the CPU is executing an instruction of a program. The CPU first completes the execution of the current
instruction. The IP is then incremented to point to the next instruction. The CPU then acknowledges the re-
questing device on its INTA pin immediately if it is a NMI, TRAP or Divide by Zero interrupt. If it is an INT
request, the CPU checks the IF flag. If the IF is set, the interrupt request is acknowledged using the INTA
pin. If the IF is not set, the interrupt requests are ignored. Note that the responses to the NMI, TRAP and
Divide by Zero interrupt requests are independent of the IF flag. Afier an interrupt is acknowledged , the CPU

= 2w -

10M

computes the vector address from the type of the interrupt that may be passed to the interrupt structure of the
CPU internally (in case of software interrupts, NMI, TRAP and Divide by Zero interrupts) or externally, i.e.
from an interrupt controller in case of external interrupts. (The contents of IP and CS are next pushed to the
stack. The contents of I[P and CS now point to the address of the next instruction of the main program from
which the execution is to be continued after executing the ISR. The PSW is also pushed to the stack.) The
Interrupt Flag (IF) is cleared. The TF is also cleared, after every response to the single step interrupt. The
control is then transferred to the interrupt service routine for serving the interrupting device. The new address
of ISR is found out from the interrupt vector table. The execution of the ISR starts. If further interrupts are to
be responded to during the time the first interrupt is being serviced, the IF should again be set to 1 by the ISR
of the first interrupt. If the interrupt flag is not set, the subsequent interrupt signals will not be acknowledged
by the processor, till the current one is completed. The programmable interrupt controller is used for manag-
ing such multiple interrupts based on their priorities. At the end of ISR the last instruction should be IRET.
When the CPU executes IRET , the contents of flags, IP and CS which were saved at the start by the CALL
instruction are now retrieved to the respective registers. The execution continues onwards from this address,
received by IP and CS.

Interrupt :
TYPE N 88:5p
' > MAIN PSW
: S5:(SP-2) AT
[Psw | [mancs| [mamip] [SSEPD T
|
l
Status while executing MaIN ISR CSISR IP ISR
Programme I
]
0000:03FFH | ———4———_
' Interrupt
0000:(4N+2) = 1SR CS vector
table
0000:(4N) | ISR IP
0000:0000
Memory Bank

5a)

Draw the interrupt vector table. Mention dedicated interrupts with respect to 8086.

e Interrupt vector table diagram
e Explanation of dedicated interrupts

Lw Zw

6M

Interrupt Type Content (16-bit) Address Comments

Type 0 SRIp 0000:0000 7 Reserved for divide by Zero
ype interrupt
ISR CS 0000:0002
Type 1 { ISR IP 0000:0004 1 Reserved for single step
ISR CS 0000:0006 | interrupt
ISR IP 0000:0008
Tpe2 | Reserved for NMi
ISRCS 0000:000A
Type 3 _[ISR IP 0000:000C — Regerved for INT single byte
ISR CS 0000:000E | instruction
ISR IP 0000:0010
Type 4 —r RRES 2000:0012 :I Reserved for INTO instruction
0000:0014 ——
0000:0016
ISR IP 0000:004N Reserved for two byte
Type N ‘ €
_[ISR CS 0000:(004N+2) instruction INT TYFE
0000:03FC
Type FFH _[ISR IP 0000:03FE
ISR CS 0000:03FF ——

ISH: Interrupt Service Routine

8086 supports a total of 256 types of the interrupts, i.e. from 00 to FFH. Each interrupt requires 4 bytes, i.e.
two bytes each for I[P and CS of its ISR. Thus a total of 1,024 bytes are required for 256 interrupt types, hence
the interrupt vector table starts at location 0000:0000 and ends at 0000:03FFIL. The interrupt vector table
contains the IP and CS of all the interrupt types stored sequentially from address 0000:0000 to 0000:03FF H.
The interrupt type N is multiplied by 4 and the hexadecimal multiplication obtained gives the offset address
in the zeroeth code segment at which the IP and CS addresses of the interrupt service routine (ISR) are stored.
The execution automatically starts from the new CS:IP.

Dedicated interrupts:

1INT O (Divide by zero):

This interrupt cccurs whenever there is division error. i.e. When the result of division is too
large to be stored.

This condition normally occurs when the divisor is very small as compared to the dividend
or the divisor is zero.

Its ISR address is stored at location 0 x4=00000in the IVT.

2. INT 1 (single step):

The microprocessor executes this interrupt atter every instruction if TFis set.

It puts the microprocessor in single stepping mode i.e. up pauses after executing every
instruction.

This is very useful during debugging.

Its ISR generally displays contents of all registers.

Its ISR address is stored at location 1 x 4=00004 in the IVT.

3. INT 2: (Non-maskable interrupt)
The pp executes this ISR in response to an interrupt on NMI line.
Its ISR address is stored at location 2 x 4=00008H in the IVT .

4. INT 3: (Breakpoint interrupt):

Itis used to create the breakpoints in the program.

Itis used for debugging large programs where the single stepping is inefficient.
Its ISR address is stored at location 3 x 4=0000CH in the IVT.

5. INT 4: (Overflow interrupt):
This interrupt occurs if the overflow flag is set and the pp executes INTO
instruction(Interrupt on overflow).

Itis used to detect overflow error in signed arithmetic operations.
Its ISR address is stored at location 4 x 4=00010H in the IVT .

5(b)Explain stack structure of 8086 in detail.
e PUSH operation
e POP operations

PUSH Operation:

Let the content of 55 be 5000 H and the content of the stack pointer register be 2050 H. To find «
current stack-top address, the stack segment register content is shifted left by four bit positions (multip]
10 H} and the resulting 20-bit content is added with the 16-bit offset value, stored in the stack pointer re
In the above case, the stack top address can be calculated as shown:

Thus the stack top address is 52050 H. Figure 4.1 makes the concept more clear.

Addresses
55 B000H ¥
T <—— 50000 H
Allowed Stack
Memaory Area
Registers in Jc
Architecture = 52050 H Stack-top
Physical address

Mamory Banlt
|

If the stack top points to a memory location 52050 H, it means that the location 52050 H is alreac
cupied, i.e. previously pushed data is available at 52050 H. The next 16-bit push operation will decr
the stack pointer by two, so that it will point to the new stack-top 5204EH, and the decremented conte
SP will be 204E H. This location will now be occupied by the recently pushed data. Thus, if a 16-bi
is pushed onto the stack, the push operation will decrement the SP by two because two locations will
quired for a 2-byte (16-bit) data. Thus it may be noted here that the stack grows down.

Thus for a selected value of S8, the maximum value of SP = FFFF H and the segment can have max
of 64K locations, Thus after starting with an initial value of FFFFH, the Stack Pointer (SF) is decrem
by two, whenever a 16-bit data is pushed onto the stack. After successive push operations, when the

Pointer contains 0000 H, any attempt to further push the data to the stack will result in stack overflow.
|

Z =

4M

POP operation:

Suppose, a main program is being executed by the processor. At some stage during the execution of the
program, all the registers in the CPU may contain useful data. In case there is a subroutine CALL instruction
at this stage, there is a possibility that all or some of the registers of the main program may be modified due
to the execution of the subroutine. This may result in loss of useful data, which may be avoided by using the
stack. At the start of the subroutine, all the registers’ contents of the main program may be pushed onto the
stack one by one. After each PUSH operation SP will be modified as already explained before. Thus all the
registers can be copied to the stack. Now these registers may be used by the subroutine, since their original
contents are saved onto the stack. At the end of the execution of the subroutine, all the registers can get back
their original contents by popping the data from the stack. The sequence of popping is exactly the reverse of
the pushing sequence. In other words, the register or memory location that is pushed into the stack at the end
should be popped off first.

Write an ALP which replaces all occurrences of character '-' in a given string by '*'.
e Template
e Algorithm
.MODEL SMALL
.STACK 64H
.DATA
STAR DB **’
DASH DB ¢~
BLOCKI1 DB ‘C-M-R-I-T$’
COUNT EQU ($-BLOCK1)
.CODE
MOV AX,@DATA
MOV DS,AX
MOV DL,STAR
MOV BL,DASH
MOV CX, COUNT
MOV SI, OFFSET BLOCK1
L1: MOV AL,[SI]
CMP AL,BL
1Z 12
INC SI
JMP L3
L2: MOV [SI],DL
INC SI
L3: LOOP L1

MOV AH,4CH
INT 21H
END

L o X &

10M

Copy 100 bytes of data from LOC1 to LOC2 using MOYVS instruction. Give the significance of
SIL, DI, CX and DF bit.
e Template
e Algorithm
e Significance of SI, DI, CX and DF
.MODEL SMALL
.STACK 64H
.DATA
LOC1 DB 100 DUP(0)
LOC2 DB 100 DUP(‘?*)
COUNT EQU 100
.CODE
MOV AX,@DATA
MOV DS,AX
MOV ES,AX

MOV CX, COUNT
MOV SI, OFFSET LOC1
MOV DI, OFFSET LOC2
CLD

REP MOVSB

MOV AH,4CH

INT 21H

END
As the direction flag is cleared in the program, SI and DI are incremented after every MOVSB
instruction.
CX register value decides how many times REP will execute. E.g. if initially CX is loaded with 5
REP MOVSB will repeat 5 times. Every REP instruction decrements CX register value by 1.
DF=0, SI and DI are auto incremented on execution of string instruction, otherwise they are auto

decremented,

Lw & Zw

10M

10

A two digit BCD number is typed using a keyboard. Write an ALP to read the value, save it
as BCD number at LOC as packed BCD.

10M

Template
Algorithm
.MODEL SMALL
.STACK 64H
.DATA

LOC DB 1 DUP(0)
.CODE

MOV AX,@DATA
MOV DS,AX

MOV AH,01H
INT 21H

SUB AL,30H
MOV BH,AL

MOV AH,01H
INT 21H

SUB AL,30H
MOV BL,AL

MOV CL,04
ROL BH,AL
OR BL,BH

MOV SI, OFFSET LOC

MOV [SI],BL
MOV AH,4CH
INT 21H

END

L o X »

