

Scheme Of Evaluation

Internal Assessment Test 2 – April.2019

Sub: Microprocessor Code: 17EC46

Date: 16/04/2019 Duration: 90mins
Max

Marks: 50
Sem: IV Branch:

ECE(A,B,C,D)/
TCE

Note: Answer Any Five Questions

Des
cri
pti
on

Marks Distribution Max
Marks

1

Explain the following string instruction: (i) CMPSB, (ii) MOVSB, (iii) LODSB, (iv) STOSB,
(v) SCASB.

 CMPSB
 MOVSB
 LODSB
 STOSB
 SCASB

Solution:

CMPSB /CMPSW:

It is used to compare a byte(or word) in the data segment with a byte(or word) in the extra
segment. The offset address of the source in the data segment should be in SI. The offset address of
the destination in the extra segment should be in DI.SI and DI are incremented / decremented after
each operation depending upon the direction flag DF in the flag register. Comparison is done by
subtracting the byte (or word) in extra segment from the byte(word) in data segment. The flag bits
are affected, but the result is not stored anywhere.
Example:
 CMPSB ; compare DS:[SI] with ES:[DI]
 SI  SI±1 …..depending upon DF
 DI  DI±1 …..depending upon DF
 CMPSW ; compare {DS:[SI], DS:[SI+1]} with {ES:[DI], ES:[DI+1]
 SI  SI±2 …..depending upon DF
 DI  DI±2 …..depending upon DF

IF DF=0, SI and DI are incremented, otherwise decremented.

MOVSB/MOVSW: Move String Byte or String Word

It is used to transfer a word/byte from data segment to extra segment. The offset address of the
source in the data segment should be in SI. The offset address of the destination in the extra
segment should be in DI. SI and DI are incremented / decremented depending upon the direction
flag.

Example:

 MOVSB ; ES:[DI]  DS:[SI]

2
M

2
M

2
M

2
M

2
M

10 M
10
M

SI  SI±1 …..depending upon DF

DI  DI±1 …..depending upon DF

 MOVSW ; {ES:[DI], ES:[DI+1] DS:[SI],
DS:[SI+1]}

DI  DI±2 …..depending upon DF

SI  SI±2 …..depending upon DF

IF DF=0, SI and DI are incremented, otherwise decremented.

LODSB/LODSW: Load String Byte or String Word

The LODS instruction loads the AL/AX register by the content of a string pointed by SI in the data
segment. SI - incremented / decremented after each operation depending upon the direction flag DF
in the flag register.

Example:

 LODSB ; AL  DS:[SI]

 LODSW; AL  DS:[SI], AH DS:[SI+1],

STOSB/STOSW: Store String Byte or String Word

The STOS instruction stores the AL/AX register contents to a location of the string pointed by DI in
the extra segment.DI incremented / decremented after each operation depending upon the direction
flag DF in the flag register.

Example:

STOSB ; ES:[DI]  AL

STOSW; ES:[DI]  AL, ES:[DI+1]  AH

SCASB/SCASW: Scan String Byte or String Word

This instruction scans string of bytes or words for an operand byte or word specified in the AL or
AX register.The offset address of the string in extra segment should be in DI. DI is incremented
/decremented after each operation depending upon the direction flag DF in the flag register.
Comparison is done by subtracting the byte (or word) in extra segment from AL (AX). The flag bits
are affected, but the result is not stored anywhere.

Example:

SCASB ; compare AL with ES:[DI]

 DI
 DI±1 …..depending upon DF

SCASW; compare {AX} with {ES:[DI], ES:[DI+1]

 DI  DI±2 …..depending upon DF

If DF=0 SI and DI are incremented, otherwise decremented.

2

What are assembler directives? Describe the following assembler directives with examples: (i)
DB (ii) EQU (iii) DUP (iv) ASSUME (v) ENDS.

 Definition of assembler directive
 Description with example
 DB
 EQU
 DUP
 ASSUME
 ENDS

An Assembly language program is a series of statements, or lines. Which contains either
assembly language instructions or statements called directives.

Assembler Directives (pseudo-instructions) give directions to the assembler about how it
should translate the Assembly language instructions into machine code.

Assembler directives are non processor executable program instructions which help the
assembler to arrange and prepare the code better.

i. DB (Define Byte): this directive directs the assembler to reserve byte or bytes of memory
locations.

Ex:

a. num db 25H

This statement directs the assembler to reserve 1 byte memory location for a variable or label
named num and initialize it with value 25H.

b. rank db 01h,02h,03h,04h,05h

This statement directs the assembler to reserve 5 byte memory locations for a list named rank
and initialize them with values above specified 5 values25H.

ii. EQU: (Equate)
The directive EQU is used assign a label with a value or symbol. It is used to define a
constant without occupying a memory location.
Ex: count equ 5

Here equ is used to assign a label count with value 5.

iii. DUP (duplicate):
DUP will duplicate a given number of characters.
Ex: list db 5 dup (25H)
Dup directs the assembler to duplicate value 25H in 5 memory locations starting from
label list.

iv. ASSUME: Assume Logical Segment Name:
It tells the assembler what address will be in the segment registers at execution time.

 Ex: Assume CS:code, DS:Data, ES:Extra
v. ENDS:END of Segment

Indicates the end of logical segment.

1
M

1
M

2
M

2
M

2
M

2
M

10 M
10
M

Ex:

Data Segment ; Indicates the

 ;beginning of logical segment named Data

Num db 10H

Data Ends; Indicates the end of logical segment named Data.

3

Explain the following commands: (i) AAM (ii) JNC LABEL (iii) CALL (iv) DAA (v) CLC
and (vi) CMC.

 AAM
 JNC LABEL
 CALL
 DAA
 CLC
 CMC

AAM – ASCII adjust after Multiplication
The AAM instruction used after MUL instruction that multiplies two unpacked BCD operands.
After the execution of AAM instruction, the product available in AX will be converted into
unpacked BCD format.
Example:
 MOV AL,’9’ ; AL=39H
 MOV BL,’8’ ; BL=38H
 SUB AL, 30H ; AL=09H
 SUB BL, 30H ; BL=08H
 MUL BL ; AX=0048H
 AAM ;AX= 0702
Note: AAM instruction does the conversion by dividing AX by 10 or 0AH
 AL= remainder and AH= quotient

JNC Label:

Conditional jump execution. If CY Flag=1, the sequence of execution transfers to the location
identified by LABEL.

E.g. JNC L2

CALL:

CALL is unconditional Control Transfer (Branch) instruction. This instruction is used to call
subroutine (procedure) from a main program.

CALL instruction transfers the execution control to a subroutine with the intention of coming back
to the main program.

Thus in CALL , 8086 saves the address of next instruction into to the stack before branching to
subroutine. At the end of the subroutine, the control is transferred back to the main program using
the return address from the stack.

There are two types of CALL:

a. Near CALL: The subroutine called must be in the same segment (hence intra - segment).

; SP SP-2; IP  Offset address of subroutine BINtoHEX

 Far CALL: The subroutine called is in the another segment (hence inter - segment).

Here CS and IP gets new values.

2
M

2
M

2
M

2
M

1
M

1M

10 M

10
M

DAA -Decimal Adjust after Addition:

DAA works only on AL

 If after an ADD or ADC instruction the lower nibble of AL is greater than 9, or if AF
= 1, DAA instruction adds 06 to the lower nibble of AL.

 After adding 06, If the upper nibble of AL is greater than 9, or if CF = 1, DAA instruction
adds 6 to the upper nibble of AL.

For example, adding 29H and 18H will result in 41 H, which is incorrect as far as BCD is
concerned.

MNEMONIC MEANING OPERATION Flags Affected

CLC Clear Carry Flag (CF)  0 CF

CMC Complement Carry Flag (CF)  (CF)
l

 CF

4

Define interrupt and write the sequence of operations that are performed when an interrupt
is recognized using neat diagram.

 Definition of Interrupt
 Sequecne of operation
 Diagram

Interrupt breaks the normal sequence of execution, diverts execution to ISR. After execution of ISR
control returns to the main program.

1
M

7
M

2
M

10 M

10
M

5a)

Draw the interrupt vector table. Mention dedicated interrupts with respect to 8086.

 Interrupt vector table diagram
 Explanation of dedicated interrupts

3
M

3
M

6 M
10
M

5(b)Explain stack structure of 8086 in detail.

 PUSH operation

 POP operations

PUSH Operation:

2
M

2
M

4 M

POP operation:

6

Write an ALP which replaces all occurrences of character '-' in a given string by '*'.

 Template

 Algorithm

.MODEL SMALL

.STACK 64H

.DATA

STAR DB ’*’

DASH DB ‘-’

BLOCK1 DB ‘C-M-R-I-T$’

COUNT EQU ($-BLOCK1)

.CODE

MOV AX,@DATA

MOV DS,AX

MOV DL,STAR

MOV BL,DASH

MOV CX, COUNT

MOV SI, OFFSET BLOCK1

L1: MOV AL,[SI]

CMP AL,BL

JZ L2

INC SI

JMP L3

L2: MOV [SI],DL

 INC SI

L3: LOOP L1

MOV AH,4CH

INT 21H

END

4

M

6

M

10 M 10
M

7

Copy 100 bytes of data from LOC1 to LOC2 using MOVS instruction. Give the significance of

SI, DI, CX and DF bit.

 Template

 Algorithm

 Significance of SI, DI, CX and DF

.MODEL SMALL

.STACK 64H

.DATA

LOC1 DB 100 DUP(0)

LOC2 DB 100 DUP(‘?’)

COUNT EQU 100

.CODE

MOV AX,@DATA

MOV DS,AX

MOV ES,AX

MOV CX, COUNT

MOV SI, OFFSET LOC1

MOV DI, OFFSET LOC2

CLD

REP MOVSB

MOV AH,4CH

INT 21H

END

As the direction flag is cleared in the program, SI and DI are incremented after every MOVSB

instruction.

CX register value decides how many times REP will execute. E.g. if initially CX is loaded with 5

REP MOVSB will repeat 5 times. Every REP instruction decrements CX register value by 1.

DF=0, SI and DI are auto incremented on execution of string instruction, otherwise they are auto

decremented,

3
M

4
M

3
M

10 M

10

M

8
A two digit BCD number is typed using a keyboard. Write an ALP to read the value, save it

as BCD number at LOC as packed BCD.

10 M 10

M

 Template

 Algorithm

.MODEL SMALL

.STACK 64H

.DATA

LOC DB 1 DUP(0)

.CODE

MOV AX,@DATA

MOV DS,AX

MOV AH,01H

INT 21H

SUB AL,30H

MOV BH,AL

MOV AH,01H

INT 21H

SUB AL,30H

MOV BL,AL

MOV CL,04

ROL BH,AL

OR BL,BH

MOV SI, OFFSET LOC

MOV [SI],BL

MOV AH,4CH

INT 21H

END

4

M

6

M

