USN					

Internal Assessment Test II – April 2019

Sub:	Machine Learning					Sub Code:	15EC834	Brar	nch:	TCE		
Date: 20/04/2019 Duration: 90 min's Max Marks: 50 Sem / Sec: A									OB	BE		
Answer any FIVE FULL Questions							MA	RKS	CO	RBT		
1.	1. Draw the perceptron network with the notation. Derive an equation of gradient descent											
rule to minimize the error.							0]	CO2	L2			
2.	Write an algorit	thm for Back	k Propagation	n Algorithm wh	ich u	ses stochasti	c gradient des	cent				
method. Comment of the effect of adding momentum to the network.							0]	CO2	L3			
3. (a) Explain MAP and ML hypothesis.						[:	5]	CO2	L1			
3. (b) Explain appropriate problems for Neural Network learning.						[:	5]	CO2	L1			
4. The following table gives the data set. Classify the following instance using Naïve Bayes												
Classifier: $\langle Refund = No, Married, Taxable Income = 120K \rangle$ (Refer Table-1)							CO2	L4				
5.	5. Describe the maximum likelihood hypothesis for predicting probabilities. [10]						0]	CO2	L3			
6.(a)	6.(a) Write the short note on features of Bayesian Learning method.						[0	5]	CO2	L1		

USN	

Internal Assessment Test I – April 2019

Sub:	Machine Learning					Sub Code:	15EC834	Bran	nch:	TCE		
Date: 20/04/2019 Duration: 90 min's Max Marks: 50 Sem / Sec: A										OB	BE	
Answer any FIVE FULL Questions MA								MA	RKS	CO	RBT	
1. Draw the perceptron network with the notation. Derive an equation of gradient descent						cent						
rule to minimize the error.							.0]	CO2	L2			
2.	Write an algorit	hm for Back	ropagation	n Algorithm wh	ich u	ses stochasti	c gradient des	cent				
method. Comment of the effect of adding momentum to the network.						[5]	CO2	L3				
3. (a) Explain MAP and ML hypothesis.						[:	5]	CO2	L1			
3. (b) Explain appropriate problems for Neural Network learning.						[1	.0]	CO2	L1			
4. The following table gives the data set. Classify the following instance using Naïve Bayes												
Classifier: $\langle Refund = No, Married, Taxable Income = 120K \rangle$ (Refer Table-1)							CO2	L4				
5.	5. Describe the maximum likelihood hypothesis for predicting probabilities.						[0)5]	CO2	L3		
6.(a)	Write the short	note on feat	ures of Bayes	sian Learning n	netho	d.			[0)5]	CO2	L2

6. (b) Consider a medical diagnosis problem here 2 alternative hypothesis are present i.e. the patient has a particular form of cancer and the patient does not with the prior knowledge that, over the entire population only 0.8% have this disease. The lab test has the indicator of the disease as follows: correct positive in 98% of the cases and correct negative result in 97% of the case. If a new patient for whom the lab test returns a positive result should we diagnose the patient as having cancer or not?

[05]	CO2	L2
[10]	CO3	L2

7. Explain K-Nearest Neighbor learning algorithm with example.

Table-1 (Question No. 4)

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120IK	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

6. (b) Consider a medical diagnosis problem here 2 alternative hypothesis are present i.e. the patient has a particular form of cancer and the patient does not with the prior knowledge that, over the entire population only 0.8% have this disease. The lab test has the indicator of the disease as follows: correct positive in 98% of the cases and correct negative result in 97% of the case. If a new patient for whom the lab test returns a positive result should we diagnose the patient as having cancer or not?

[05]	CO2	L2
[10]	CO3	L2

7. Explain K-Nearest Neighbor learning algorithm with example.

Table-1 (Question No. 4)

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120IK	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes