LISN

INTERNAL ASSESSMENT TEST II

Sub:	DIGITAL COMMUNICAT	ΓΙΟΝ						Code:	15EC61
Date:	15/ 04 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	TCE, ECE (C)

Answer any 5 full questions

		Marks	со	RBT
1	What is inter symbol interference (ISI)? Explain binary pulse amplitude modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI.	10	4	3
2(a)	Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution?	5	4	3
2(b)	Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for $\alpha=0.5$.	5	4	2
3	With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver.	10	4	3

USN					

INTERNAL ASSESSMENT TEST II

Sub:	DIGITAL COMMUNICATION				Code:	15EC61			
Date:	15/ 04 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	TCE, ECE (C)

Answer any 5 full questions

		Marks	CO	RBT
1	What is inter symbol interference (ISI)? Explain binary pulse amplitude	10	4	3
	modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI.			
2(a)	Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution?	5	4	3
2(b)	Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for $\alpha = 0.5$.	5	4	2
3	With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver.	10	4	3

4(a)	Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error.	5	4	2
4(b)	Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero.	5	4	2
5(a)	What is equalization? Explain zero forcing equalizer with a neat block diagram.	5	4	2
5(b)	Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates.	5	2	3
6	Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t)=1, 0 \le t \le \frac{T}{3}$ $x_2(t)=1, 0 \le t \le \frac{2T}{3}$ $x_3(t)=1, \frac{T}{3} \le t \le T$	10	2	3

4(a)	Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error.	5	4	2
4(b)	Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero.	5	4	2
5(a)	What is equalization? Explain zero forcing equalizer with a neat block diagram.	5	4	2
5(b)	Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates.	5	2	3
6	Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t) = 1, 0 \le t \le \frac{T}{3}$ $x_2(t) = 1, 0 \le t \le \frac{2T}{3}$ $x_3(t) = 1, \frac{T}{3} \le t \le T$	10	2	3

Scheme Of Evaluation

<u>Internal Assessment Test II – April 2019</u>

Sub:	DIGITAL COMMUNICATION						Code:	15EC61	
Date:	15/04/2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	TCE

Note: Answer Any Five Questions

Ques #	stion #	Description	Marks Distrib		Max Marks
1		What is inter symbol interference (ISI)? Explain binary pulse amplitude modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI. • Definition of ISI • Block diagram of binary PAM system	2 2	10	10
		 Time domain condition for zero ISI Frequency domain condition for zero ISI 	3 3		
2	a	Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution?		5	10
		 Ideal Solution to ISI Practical difficulties	3 2		
	b	Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for α =0.5.		5	
		 Formula for P(f) Plot of P(f) 	3 2		
3		With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver.		10	10
		 Block diagram Magnitude Response Phase response Impulse response Decision rule 	2 2 2 2 2 2		
4	a	Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error.		5	10
		 Precoded bits Transmitted amplitudes Decoded bits 	2 2 1		
	b	Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero.		5	
		 Transmitted amplitudes decoded bits 	2 3		
5	a	What is equalization? Explain zero forcing equalizer with a neat block diagram.		5	10

		DefinitionBlock diagram and explaination	2 3		
	b	Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates.		5	10
		 Expression for energy 	5		
6		Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t) = 1, 0 \le t \le \frac{T}{3}$ $x_2(t) = 1, 0 \le t \le \frac{2T}{3}$ $x_3(t) = 1, \frac{T}{3} \le t \le T$		10	
		• Basis function $\phi_1(t)$	2		
		 Basis function φ₂(t) Basis function φ₃(t) Signal-space diagram 	2 2 4		

$$x(t) = \sum_{k=-\infty}^{\infty} v(t-kT_b)a_k$$

$$y(t) = \mu \sum_{k=-b}^{\infty} a_{k} p(t-kT_{b})$$

$$2a \qquad \stackrel{\approx}{\underset{k=-60}{\text{EP}}} (f - kR_b) = T_b$$

- i) No margin for timing error
- 2) Aboupt transitions.

$$P(f) = \begin{cases} T_{b}, & |f| < f_{1} \\ \frac{T_{b}}{2} \left[1 + \cos \left(\frac{\pi}{2} \frac{|f| - f_{1}}{B_{0} - f_{1}} \right) \right], & f_{1} \leq |f| \leq 2B_{0} - f_{1} \\ 0, & |f| > 2B_{0} - f_{1} \end{cases}$$

$$a_{k} = \begin{cases} 1 & \text{if } b_{k} = 1 \\ -1 & \text{if } b_{k} = 0 \end{cases}$$

$$h(f) = \begin{bmatrix} 1+ e^{j2\pi f T_b} \end{bmatrix} T_b, -k_b = f < k_b \\ h(f) = sinc(r_b f) + sinc(r_b (f - T_b))$$

$$h(f)$$

$$h(f)$$