| LISN | |------| |------| #### INTERNAL ASSESSMENT TEST II | Sub: | DIGITAL COMMUNICAT | ΓΙΟΝ | | | | | | Code: | 15EC61 | |-------|--------------------|-----------|---------|------------|----|------|----|---------|--------------| | Date: | 15/ 04 / 2019 | Duration: | 90 mins | Max Marks: | 50 | Sem: | VI | Branch: | TCE, ECE (C) | ## Answer any 5 full questions | | | Marks | со | RBT | |------|--|-------|----|-----| | 1 | What is inter symbol interference (ISI)? Explain binary pulse amplitude modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI. | 10 | 4 | 3 | | 2(a) | Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution? | 5 | 4 | 3 | | 2(b) | Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for $\alpha=0.5$. | 5 | 4 | 2 | | 3 | With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver. | 10 | 4 | 3 | | USN | | | | | | |-----|--|--|--|--|--| #### INTERNAL ASSESSMENT TEST II | Sub: | DIGITAL COMMUNICATION | | | | Code: | 15EC61 | | | | |-------|-----------------------|-----------|---------|------------|-------|--------|----|---------|--------------| | Date: | 15/ 04 / 2019 | Duration: | 90 mins | Max Marks: | 50 | Sem: | VI | Branch: | TCE, ECE (C) | ## Answer any 5 full questions | | | Marks | CO | RBT | |------|---|-------|----|-----| | 1 | What is inter symbol interference (ISI)? Explain binary pulse amplitude | 10 | 4 | 3 | | | modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI. | | | | | 2(a) | Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution? | 5 | 4 | 3 | | 2(b) | Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for $\alpha = 0.5$. | 5 | 4 | 2 | | 3 | With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver. | 10 | 4 | 3 | | 4(a) | Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error. | 5 | 4 | 2 | |------|--|----|---|---| | 4(b) | Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero. | 5 | 4 | 2 | | 5(a) | What is equalization? Explain zero forcing equalizer with a neat block diagram. | 5 | 4 | 2 | | 5(b) | Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates. | 5 | 2 | 3 | | 6 | Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t)=1, 0 \le t \le \frac{T}{3}$ $x_2(t)=1, 0 \le t \le \frac{2T}{3}$ $x_3(t)=1, \frac{T}{3} \le t \le T$ | 10 | 2 | 3 | | 4(a) | Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error. | 5 | 4 | 2 | |------|--|----|---|---| | 4(b) | Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero. | 5 | 4 | 2 | | 5(a) | What is equalization? Explain zero forcing equalizer with a neat block diagram. | 5 | 4 | 2 | | 5(b) | Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates. | 5 | 2 | 3 | | 6 | Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t) = 1, 0 \le t \le \frac{T}{3}$ $x_2(t) = 1, 0 \le t \le \frac{2T}{3}$ $x_3(t) = 1, \frac{T}{3} \le t \le T$ | 10 | 2 | 3 | ## **Scheme Of Evaluation** # <u>Internal Assessment Test II – April 2019</u> | Sub: | DIGITAL COMMUNICATION | | | | | | Code: | 15EC61 | | |-------|-----------------------|-----------|---------|------------|----|------|-------|---------|-----| | Date: | 15/04/2019 | Duration: | 90 mins | Max Marks: | 50 | Sem: | VI | Branch: | TCE | **Note:** Answer Any Five Questions | Ques
| stion
| Description | Marks
Distrib | | Max
Marks | |-----------|------------|--|----------------------------|----|--------------| | 1 | | What is inter symbol interference (ISI)? Explain binary pulse amplitude modulation (PAM) system with a neat block diagram. Obtain the time domain and frequency domain condition for zero ISI. • Definition of ISI • Block diagram of binary PAM system | 2 2 | 10 | 10 | | | | Time domain condition for zero ISI Frequency domain condition for zero ISI | 3 3 | | | | 2 | a | Starting from the frequency domain condition for zero ISI, derive the ideal solution to ISI. What are the practical difficulties in implementing the ideal solution? | | 5 | 10 | | | | Ideal Solution to ISI Practical difficulties | 3 2 | | | | | b | Explain raised cosine spectrum as a practical solution to ISI. Plot the raised cosine spectrum for α =0.5. | | 5 | | | | | Formula for P(f) Plot of P(f) | 3 2 | | | | 3 | | With a neat block diagram, explain duobinary coder. Derive and plot magnitude response, phase response and impulse response. Explain the decision rule at the receiver. | | 10 | 10 | | | | Block diagram Magnitude Response Phase response Impulse response Decision rule | 2
2
2
2
2
2 | | | | 4 | a | Binary data "10011101" is transmitted using a duobinary coder with precoder. Obtain the precoded bits, transmitted amplitudes and decoded bits assuming no transmission error. | | 5 | 10 | | | | Precoded bits Transmitted amplitudes Decoded bits | 2
2
1 | | | | | b | Binary data "10011101" is transmitted using a modified duobinary coder without precoder. Obtain the transmitted amplitudes. Decode the bits assuming that transmitted amplitude due to second bit reduces to zero. | | 5 | | | | | Transmitted amplitudes decoded bits | 2 3 | | | | 5 | a | What is equalization? Explain zero forcing equalizer with a neat block diagram. | | 5 | 10 | | | | DefinitionBlock diagram and explaination | 2 3 | | | |---|---|--|-------------|----|----| | | b | Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t) + a_3\phi_3(t)$, $0 \le t \le T$, where a_1, a_2, a_3 are the coordinates of $x(t)$ with respect to the basis functions $\phi_1(t), \phi_2(t), \phi_3(t)$. Obtain an expression for the energy of $x(t)$ in terms of its coordinates. | | 5 | 10 | | | | Expression for energy | 5 | | | | 6 | | Using Gram Schmidt Orthogonalization procedure, obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the signal-space diagram. $x_1(t) = 1, 0 \le t \le \frac{T}{3}$ $x_2(t) = 1, 0 \le t \le \frac{2T}{3}$ $x_3(t) = 1, \frac{T}{3} \le t \le T$ | | 10 | | | | | • Basis function $\phi_1(t)$ | 2 | | | | | | Basis function φ₂(t) Basis function φ₃(t) Signal-space diagram | 2
2
4 | | | $$x(t) = \sum_{k=-\infty}^{\infty} v(t-kT_b)a_k$$ $$y(t) = \mu \sum_{k=-b}^{\infty} a_{k} p(t-kT_{b})$$ $$2a \qquad \stackrel{\approx}{\underset{k=-60}{\text{EP}}} (f - kR_b) = T_b$$ - i) No margin for timing error - 2) Aboupt transitions. $$P(f) = \begin{cases} T_{b}, & |f| < f_{1} \\ \frac{T_{b}}{2} \left[1 + \cos \left(\frac{\pi}{2} \frac{|f| - f_{1}}{B_{0} - f_{1}} \right) \right], & f_{1} \leq |f| \leq 2B_{0} - f_{1} \\ 0, & |f| > 2B_{0} - f_{1} \end{cases}$$ $$a_{k} = \begin{cases} 1 & \text{if } b_{k} = 1 \\ -1 & \text{if } b_{k} = 0 \end{cases}$$ $$h(f) = \begin{bmatrix} 1+ e^{j2\pi f T_b} \end{bmatrix} T_b, -k_b = f < k_b \\ h(f) = sinc(r_b f) + sinc(r_b (f - T_b))$$ $$h(f)$$