

Solution Internal Assessment Test III – May 2019

Sub:		RADAR Engineering					Code:	15EC833	
Date:	15/05/2019	Duration:	90mins	Max Marks:	50	Sem:	8	Branch:	ECE

Note: Answer Any Five Questions

Question #	Description	Mar Distrib		Max Marks
1.	What are the various antenna parameters? Discuss in detail. Discuss the effect of aperture efficiency on radar performance and why it should not be interpreted as an indicator of power loss. (i) Directive gain (ii) Power gain (iii) Antenna radiation pattern (iv) Effective aperture (v) Sidelobe radiation (vi) Polarization (vii) Aperture efficiency and its effects 1. Antenna Pavametoru: (i) Grain: The gain of the antenna is defined as the ability of the antenna to transmit the energy in the desired direction. (vi) Polarization (vii) Aperture efficiency and its effects 1. Antenna Pavametoru: (ii) Antenna Pavametoru: (iv) Effective aperture (v) Sidelobe radiation (vi) Polarization (vi) Polarization (vii) Aperture efficiency and its effects 1. Antenna Pavametoru: (iv) Effective aperture (v) Sidelobe radiation (vi) Polarization (vi) Polarization (vi) Polarization (vii) Aperture efficiency and its effects (viii) Aperture efficiency and its effects (v) Grain: The gain of the antenna is defined as the energy gain (vii) Aperture efficiency and distribution intentity (viii) Aperture efficiency and distribution intentity and the solid angle along the paradiation intentity and the solid angle along the paradiation intentity and the solid angle along the biseaction intentity and the entry of the antenna in the antenna in the description in the solid angle and the solid angle along the antenna in d	2 M 1 M 1 M 1 M 1 M 3 M	10 M	10 M

Go: $\frac{dx}{\int \int f(\theta, \phi) d\phi}$ Go: $\frac{dx}{B}$
where B is the beam area, B. [500, p) do dp
where B is the beam area, B. [500, p) do dp
where B is the beam area, B. [500, \$) do d\$ P(0, \$) mos.
where B is the beam area, B. [500, \$) do d\$
where B is the beam area, B. [500, \$) do d\$
((0, p) reas.
54
Beam onea is also defined with the half beamwidth
Or and the an
On and the an
P - AR AR
: GD = 4K
0.4
The above gain expressions are in nadians expression
the above gain
it in digner we get
60 = 41,253
Do do
In converse appeal town For practical arterna:
In courses appel boom For process
Garreson Chapter 50,000
Go de
AND ETA
the Grain : Their gain girch the directive gain along
Grain: Their gain of the system It with the discripiations when of the system of
downot nelude the loss due to mismoth of
downat helped the sons

and is defined as max nadiation intervity net power accepted by the system (4) G: gradiation intervity by the practical anterval gastation intensity of the isotropic antenna with some power input. a are substed by Go and G= In Go In in the padiation efficiency. It we where ard in defined as total power redicted phillipping net power oxcepted by the eyeten. ii) Effective Apenture Elfective Apenture is defined as the area possibled by the arterina for the incident energy. and effection also is defined by teachestion = ATBA where Ac - effective appertuse > Sa A Sa - Aporture efficiency physical area

the hidelobe land large but solder meters the main bobe.

iii) Radiation intensity pattern.

the production was intentity when plotted against the angular collisated we get pradiate on pattorn. On selective basis it can be notionalized by equating the maximum value to writy.

neglected antered as shown.

of shoulders which owner when there is outs in apenture the out anternas. The illumination and this is not prevent for all anternas. The 1st side labe will be in the position of shoulder is there was no exhall in aposition illumination.

Conventional sightedou will have spill over at

Back laber are found and due to leakage at the edges of the suffertal arterna and due to the mismatch as well.

") Side lobe gadiation:

patients which one other than main beam.

Ideally no sidelable should be present which

is practically not possible and it no sidelabes were

present the main beam width would be wide.

But low ride lobe tooks are useful in deturning the angle range and helping the directivity by making the main beam randow.

v) Clarization:

Polarization is the alignment of the electric field it can electric field it can be linearly polarized. It can have holizontal assessment is used in the surveillance sadow. It can have restical polarization liked in tracking sadow.

	Couldn tolarization is obtained by sustating the automa of the rette of RF frequency with constant emplified. Elliptical polarization is also obtained similar to conclude tolarization but here the complitude value cincular tolarization is used in the midst of sain tolarization efficiency: The apenture efficiency is adisterent from the radiation efficiency is mediation efficiency. It appeals loss than unity then the army is efficiency is efficiency is less than unity means the crucy is efficiency is less than unity means the crucy is efficiency is less than unity means the crucy is estimated in angle, therefore not loss it should not be interpreted as an indicated of it should not be interpreted as an indicated of the power loss. The Aposture efficiency is not that impritant when we service in Radan Engineering it is tolars to made less to askiell other parametrous of sudar or made less to askiell other parametrous of sudar such low side lobe level, mange, system performance cle.			
2.	What is a feed in parabolic reflector antenna? What are the various types of feeds used? Explain with neat figures. (i) Explanation of feed (ii) Rear feed using half wave dipole and reflector (iii) Rear feed using horn, front horn feed (iv)Offset- fed reflector (v) Cassegrain feed (vi)Polarization twist cassegrain The parabolic reflector arteria is illuminated usith the source at shown ledge. Samuel by Cassegrance	2 M 1 M 2 M 1 M 2 M 2 M	10 M	10M

		in aperture blocking, whom the pulported says is Wholed by the support and also there is a mismate due to the sufferted mays obtaining the holen and the transmission line We figure is as shown in signed where the use have the feed (beated at the form and it is tipped the feed to sunjaced is halfed and only the half sunjaced is halfed and only the half sunjaced is halfed and only the hierarch ductosed where any aperture blacking (a) the piernatch ductosed there are aperture blacking (b) the Anterna, there she the the assymmetry of the Anterna, there will be shown planified block mother distribute the local particles and effect the system paydone for a e			
3	(a)	Why does a parabolic surface make a good reflector antenna? When might each of the following parabolic reflector antennas be used: (a) paraboloid (b) section of a paraboloid (c) parabolic cylinder. (i) Explanation of parabolic reflector antenna with figure (ii) Paraboloid (iii) Section of a paraboloid (iv) Parabolic cylinder	3 M 1 M 1 M 1 M	06 M	06 M

7.9				
3. 0	Parabolic surface make a good reflector antenns i) The stage from the fours of the farabola reflects at the parabolic surface and travel in reflects at the parabolic surface and travel in the direction parabolic surface to parabola assis. the same distracts to the directorin of the same distracts to the directorin of the same distracts to the directorin of the same distracts they constant from the sound. a) Parabolic is obtained by soluting the the parabolic surface around the focus the parabolic surface around the focus			
	S Used IN Backing land.			
خة	Settion of Paraboloid. Obtained when elliptical surface but (i.e cut from the parabola as exhiptical).			
24	is med as 2-dimensional suglector. ⇒ Used in Aig-Surveillance Radar.			
9	Panalolic Glinder-			
os os	obtained when parabolic surgace is aved formallelledy and timeary away is used the feed			
and a	=> Used in Aire - Surveillance for Marine operations			
(b) Write sl	hort notes on grating lobes.	234	434	4.34
(i)	Definition	2 M 2 M	4 M	4 M

	The age and a second to the se			
	b) Grating lobes:			
	The beam which has marinum peak			
	other than the main beam is the Guating lobe			
	which ejects the system performance, John detection			
	Of tardy.			
	This occurs where the spacing between			
	the target place array elements (d) is greater			
	than half the wardength.			
	.: I The spacing between the away elements			
	should be less tean or equal to half the			
	waveleyth.			
	a constitue that			
	Grating lobe can be found by equating the			
	benominator of oursey factor to 0			
	N2 SINT (x(dx) sine) = 0			
	$x \cdot \frac{d}{d} \sin \theta = \pm \sqrt{x}$			
	e.a. + nl			
	a d			
	A (W) ((87)			
	here above equation tests a -1/2			
	d=0.54%.			
	What are electronically steered phased array antennas? Obtain the array			
	factor for a uniformly spaced linear array of N isotropic elements. When radiating elements are not isotropic, how is the antenna radiation pattern modified?			
4.	(i) Definition and Explanation	4 3 4	10	10 M
	(ii) Array factor derivation for isotropic elements	4 M 4 M	M	10 101
	(iii) Array factor derivation for non-isotropic elements	2 M		

		4. The boom of the arterna can be electronically streeted to the desired disrection using the phase			
		away is used, where it depends on the amount Whenation of the single aways.			
		Pranas suraya is line coway of the array in the 2-0 line owney.			
		Consider the N away of elements, which has the institute and an arghe of from the normal. Control - ng all the away elements to be isotoropic			
		The total energy is summed up giving.			
		Ea = E. Sin wat + E (sin but + th) + E. Sin (wat + (N-1) p) (iv)			
		Explain conical scan tracking radar with a neat block diagram.			
5.		(i) Basic concept of conical scan (ii) Conical scan tracking diagram			
<i>J</i> .		(iii) Block diagram (iv) Explanation	3 M 2 M 3 M 2 M	10 M	10 M
		Derive and obtain the expression that defines the system noise figure when it includes the effects of antenna temperature and effective noise temperature.			
6.	(a)	 (i) Noise figure of a linear network, its interpretations with modified expressions (ii) Effective noise temperature, Te (iii) Expression of Ts in terms of Fs (iv) Explanation 	2 M 1 M 2 M	06 M	06 M
	(b)	Which are the parameters that determine the noise figure of a mixer? Give relevant expressions	1 M		
	(0)	 (i) Conversion loss with expression (ii) Noise temperature ratio with expression (iii) Expression for Fm in terms of Lc and tr (iv) Explanation 	M 1 M 1 M 1 M	04 M	04 M
		Explain balanced duplexer using dual TR tubes with a neat figure. Why is a diode limiter following the duplexer sometimes used as a receiver protector?			
7.		(i) Explanation of balanced duplexer	3 M	10	10 M

	(ii) Figure (Transmit & Receive condition) (iii) Diode limiters as receiver protector	3 M 4 M	M	
	How does mixer act as a key element in a super heterodyne receiver of radar? Explain various types of mixers with relevant figures.			
8.	(i) Importance of mixer, explanation(ii) Types of mixers (5 types explanation + figures)	2 M 5+3 M	10 M	10 M