HON

INTERNAL ASSESSMENT TEST III

Sub:	DIGITAL COMMUNICAT	ΓΙΟΝ						Code:	15EC61
Date:	13/ 05 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE (A,B,C)

Answer all the questions

		Marks	СО	RBT
1	With neat block diagrams explain coherent binary ASK modulation-demodulation system. Obtain the signal space diagram. Explain the decision rule.	10	3	3
2	With neat block diagrams explain coherent binary FSK modulation-demodulation system. Obtain the signal space diagram. Explain the decision rule.	10	3	3
3	Draw the block diagram of BPSK receiver. Explain the decision rule. Obtain an expression for probability of error assuming equiprobable 0s and 1s.	10	3	3
4	With neat block diagrams explain QPSK modulation-demodulation system. Obtain the signal space diagram.	10	3	3
5	With neat block diagrams explain DPSK modulation-demodulation system. For the binary data 10101101, obtain the differentially encoded sequence. Show the phase of the modulated signal. What is the advantage of DPSK over BPSK?		3	3

USN					

INTERNAL ASSESSMENT TEST III

Sub:	DIGITAL COMMUNICATION						Code:	15EC61	
Date:	13/ 05 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE (A,B,C)

Answer all the questions

		Marks	СО	RBT
1	With neat block diagrams explain coherent binary ASK modulation-demodulation system. Obtain the signal space diagram. Explain the decision rule.	10	3	3
2	With neat block diagrams explain coherent binary FSK modulation-demodulation system. Obtain the signal space diagram. Explain the decision rule.	10	3	3
3	Draw the block diagram of BPSK receiver. Explain the decision rule. Obtain an expression for probability of error assuming equiprobable 0s and 1s.	10	3	3
4	With neat block diagrams explain QPSK modulation-demodulation system. Obtain the signal space diagram.	10	3	3
5	With neat block diagrams explain DPSK modulation-demodulation system. For the binary data 10101101, obtain the differentially encoded sequence. Show the phase of the modulated signal. What is the advantage of DPSK over BPSK?	10	3	3

Scheme Of Evaluation

<u>Internal Assessment Test III – May 2019</u>

Sub:	DIGITAL COMMUNICATION								15EC61
Date:	13/ 05 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE (A,B,C)/ TCE

Note: Answer All the Questions

Ques #		Description	Marks Distrib	oution	Max Marks
1		With neat block diagrams explain coherent binary ASK modulation-demodulation system. Obtain the signal space diagram. Explain the decision rule.		10	10
		Expression for ASK modulated wave	2		
		Constellation diagram	2		
		Modulator	2		
		Demodulator	2		
		Decision rule	2		
2		With neat block diagrams explain coherent binary FSK modulation-demodulation		10	10
		system. Obtain the signal space diagram. Explain the decision rule.			
		Expression for FSK modulated wave	2		
		Constellation diagram	2		
		• Modulator	2		
		 Demodulator 	2		
		Decision rule	2		
3		Draw the block diagram of BPSK receiver. Explain the decision rule. Obtain		10	10
		an expression for probability of error assuming equiprobable 0s and 1s.			
		Block diagram of receiver	2		
		Decision rule	2		
		 Probability of error for bit 0 	4		
		Average probability of error	2		
4	a	With neat block diagrams explain QPSK modulation-demodulation system. Obtain the signal space diagram.		10	10
		 Expression for QPSK modulated wave 	2		
		Constellation diagram	2		
		• Modulator	3		
		Demodulator	3		
5	a	With neat block diagrams explain DPSK modulation-demodulation system. For the		10	10
		binary data 10101101, obtain the differentially encoded sequence. Show the phase			
		of the modulated signal. What is the advantage of DPSK over BPSK?			
		DPSK Modulator	3		
		DPSK Demodulator	3		
		Differential encoding	2		
		 Advantage of DPSK over BPSK 	2		

$$\frac{1}{5}$$

modulator

Demodulator

Decision rule:

Bit i if
$$x_1 > \frac{Eb}{2}$$

Bit o if $x_1 < \frac{Eb}{2}$

2
$$S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$$
, $o \le t \le T_b$
 $S_2(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $d_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $d_2(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $d_2(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t) = \sqrt{\frac{2E_b}{T_b}} Cos(anI_1t)$, $o \le t \le T_b$
 $S_1(t)$

2

Bit'o' if 100

BPSK received

Bit i if
$$\alpha_1 > 0$$

Bit o if $\alpha_1 < 0$ - $(\alpha_1 + \sqrt{\epsilon}b)$
 $f_{\chi_1}(\alpha_1/0) = \sqrt{\pi N_0}$
 $(\alpha_1 + \sqrt{\epsilon}b)^2$
 $(\alpha_1 + \sqrt{\epsilon}b)^2$

$$\frac{\left(24\sqrt{6}b\right)^{2}}{No} = \frac{2^{2}}{2}$$

$$P_{e}\left(0\right) = \sqrt{20} \int_{e}^{\infty} e^{-\frac{2^{2}}{2}} d2$$

$$S_{i}(t) = \sqrt{\frac{2E}{T}} \cos \left(2\pi f_{c} + (2i-1)\pi\right)$$
 $i=1,2,3,4$

\$ (t) = (= cos (2 Fct) 中2(t)= 年 sin(知t), OETET Coordinate are (2i-1) [-(E SIN ((2i-1)] (0,0) Modulator Demodulatos 2:1 x(t)-Ф2(H)

4)

