

 CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – III

Sub: ARM Microcontroller and Embedded System Code:
15EC6

2

Date: 13/05/19 Duration: 90 mins Max Marks: 50 Sem: VI Branch/Section

 ECE

A ,D

section

Answer Any FIVE FULL Questions

 Marks

OBE

CO RB

T
1 . Explain the term quality attributes in an embedded system development context.

 what are the different quality attributes to be considered in an embedded system

[10] CO3 L2

2. What is Hardware and Software co-design? Explain the fundamental design

approaches in detail

[10] C04 L2

3. List and Explain the characteristics of embedded systems. [10] C03 L1

4. Explain the different Embedded firmware approaches in detail

 [10]

C04

L3

5. Explain data flow graph and control flow graph model in embedded design [10] CO4 L3

6. What are the basic functions of real time kernel ?Explain each [10] C05 L3

7. Define process and explain process states and transition diagram [10] CO5 L1

8.a Define process and explain process states and transition diagram [5] C05 L2

8.b Differentiate between thread and process [5] C05 L2

1 .(a) Explain the term quality attributes in an embedded system development context.

 what are the different quality attributes to be considered in an embedded system

Quality attributes Explanation-2 M

Operational Quality Attributes-4 M

Non operational Quality Attributes-4 M

 [05]

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

These are the attributes that together form the deciding factor about the quality of an embedded

system.

There are two types of quality attributes are:-

1. Operational Quality Attributes.

 These are attributes related to operation or functioning of an embedded system.

The way an embedded system operates affects its overall quality.

2. Non-Operational Quality Attributes.

 These are attributes not related to operation or functioning of an embedded

system. The way an embedded system operates affects its overall quality.

 These are the attributes that are associated with the embedded system before it

can be put in operation.

Operational Attributes

a) Response

 Response is a measure of quickness of the system.

 It gives you an idea about how fast your system is tracking the input variables.

 Most of the embedded system demand fast response which should be real-time.

b) Throughput

 Throughput deals with the efficiency of system.

 It can be defined as rate of production or process of a defined process over a

stated period of time.

c) Reliability

 Reliability is a measure of how much percentage you rely upon the proper

functioning of the system .

 Mean Time between failures and Mean Time To Repair are terms used in

defining system reliability.

 Mean Time between failures can be defined as the average time the system is

functioning before a failure occurs.

 Mean time to repair can be defined as the average time the system has spent in

repairs.

d) Maintainability

 Maintainability deals with support and maintenance to the end user or a client in

case of technical issues and product failures or on the basis of a routine system

checkup

 It can be classified into two types :-

1. Scheduled or Periodic Maintenance

 This is the maintenance that is required regularly after a periodic time interval.

 Example : Periodic Cleaning of Air Conditioners Refilling of printer cartridges.

2. Maintenance to unexpected failure

 This involves the maintenance due to a sudden breakdown in the functioning of the

system.

 Example:

1. Air conditioner not powering on

2. Printer not taking paper in spite of a full paper stack

e) Security

 Confidentiality, Integrity and Availability are three corner stones of information

security.

 Confidentiality deals with protection data from unauthorized disclosure.

 Integrity gives protection from unauthorized modification.

 Availability gives protection from unauthorized user

 Certain Embedded systems have to make sure they conform to the security

measures.

 Ex. An Electronic Safety Deposit Locker can be used only with a pin number

like a password.

f) Safety

 Safety deals with the possible damage that can happen to the operating person

and environment due to the breakdown of an embedded system or due to the

emission of hazardous materials from the embedded products.

2. What is Hardware and Software co-design? Explain the fundamental design approaches in

detail.

 [5]

 Hardware,Software co design –Explanation-2 M

Fundamental Approches-8 M

 The product requirements captured from the customer are converted into system level

needs or processing requirements rather than partitioning them to either h/w or s/w

 The system level processing requirements are then transferred into functions which can

be simulated and verified against performance and functionality
 The Architecture design follows the system design. The partition of system level

processing requirements into hardware and software takes place during the this phase

 Each system level processing requirement is mapped as either hardware and/or software

requirement

 The partitioning is performed based on the hardware-software trade-offs

Fundamental issues in H/w S/w Co-design

1. Model Selection

• A Model captures and describes the system characteristics.
• A model is a formal system consisting of objects and composition rules.

• The objectives vary with each phase.

• Computational Models in Embedded Design :Data Flow Graph/Diagram (DFG)

Model ,Control Data Flow Graph/Diagram (CDFG) Model ,State Machine Model,

Sequential Program Model, Concurrent/Communicating Process Model and and

Object Oriented Model

Architecture Selection

 A model only captures the system characteristics and does not provide information

on ‘how the system can be manufactured?’
 The architecture specifies how a system is going to implement in terms of the number

and types of different components and the interconnection among them.

 commonly used architectures in system design

 Complex Instruction Set Computing (CISC)

• Reduced Instruction Set Computing (RISC),

• Very long Instruction Word Computing (VLIW)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Multiple Data (MIMD) etc

 Controller architecture

 Datapath Architecture

 3. List and Explain the charecteristics of embedded systems [5]

List the charecteristics of Embedded Systems-2 M

Explain the charecteristics of Embedded Systems-8 M

CHARACTERISTICS OF EMBEDDED SYSTEM

Following are some of the characteristics of an embedded system that make it different from a

general purpose computer:

1. Application and Domain specific

 An embedded system is designed for a specific purpose only. It will not do any other task.

 Ex. A washing machine can only wash, it cannot cook

 Certain embedded systems are specific to a domain: ex. A hearing aid is an application

that belongs to the domain of signal processing.

2. Reactive and Real time

 Certain Embedded systems are designed to react to the events that occur in the nearby

environment. These events also occur real-time.

 Ex. An air conditioner adjusts its mechanical parts as soon as it gets a signal from its sensors

to increase or decrease the temperature when the user operates it using a remote control.

 An embedded system uses Sensors to take inputs and has actuators to bring out the

required functionality.

3. Operation in harsh environment

 Certain embedded systems are designed to operate in harsh environments like very high

temperature of the deserts or very low temperature of the mountains or extreme rains.

 These embedded systems have to be capable of sustaining the environmental conditions

it is designed to operate in.

4. Distributed systems

 Certain embedded systems are part of a larger system and thus form components of a

distributed system.

 These components are independent of each other but have to work together for the larger

system to function properly.

 Ex. A car has many embedded systems controlled to its dash board. Each one is an

independent embedded system yet the entire car can be said to function properly only if

all the systems work together.

5. Small size and weight

 An embedded system that is compact in size and has light weight will be desirable or

more popular than one that is bulky and heavy.

 Ex. Currently available cell phones. The cell phones that have the maximum features are

popular but also their size and weight is an important characteristic

4 Explain the different firmware approaches in detail.

 [5]

Embedded Firmware Approches

5 Types-2 marks each

 The embedded firmware is responsible for controlling the various peripherals of the

embedded hardware and generating response in accordance with the functional

requirements of the product.
 The embedded firmware is usually stored in a permanent memory (ROM) and it is non

alterable by end users

 Designing Embedded firmware requires understanding of the particular embedded

product hardware, like various component interfacing, memory map details, I/O

port details, configuration and register details of various hardware chips used and

some programming language (either low level Assembly Language or High level

language like C/C++ or a combination of the two)

 There exist two basic approaches for the design and implementation of embedded

firmware, namely;

 The Super loop based approach

 The Embedded Operating System based approach
 The decision on which approach needs to be adopted for firmware development is purely

dependent on the complexity and system requirements

Embedded firmware Design Approaches – The Super loop
 Suitable for applications that are not time critical and where the response time is not

so important (Embedded systems where missing deadlines are acceptable)

 Very similar to a conventional procedural programming where the code is executed

task by task
 The tasks are executed in a never ending loop. The task listed on top on the program

code is executed first and the tasks just below the top are executed after completing

the first task

 A typical super loop implementation will look like:

1 Configure the common parameters and perform initialization for various

hardware components memory, registers etc.

1 Start the first task and execute it

1 Execute the second task

1 Execute the next task

1 :

1 :

1 Execute the last defined task

Jump back to the first task and follow the same flow

Pros:

 Doesn’t require an Operating System for task scheduling and monitoring and free

from OS related overheads

 Simple and straight forward design

 Reduced memory footprint

Cons:

 Non Real time in execution behavior (As the number of tasks increases the frequency

at which a task gets CPU time for execution also increases)

 Any issues in any task execution may affect the functioning of the product

Enhancements:

 Combine Super loop based technique with interrupts

 Execute the tasks (like keyboard handling) which require Real time attention as

Interrupt Service routines

Embedded firmware Design Approaches – Embedded OS based Approach

 The embedded device contains an Embedded Operating System which can be

one of:

 A General Purpose Operating System (GPOS)

 A Real Time Operating System (RTOS)

 A General Purpose Operating System (GPOS)

 The processor is generic , The OS can be used as a generalized purpose

Microsoft® Windows XP Embedded is an example of GPOS for embedded

devices

 A Real Time Operating System (RTOS)

 Its specific to timing constrains

 Its deterministic based on the time response

 Windows CE’, ‘Windows Mobile’,‘QNX’, ‘VxWorks’,

5. Explain data flow graph and control flow graph model in embedded design

 [10]

Data flow graph model-5 M

Control flow graph model-5 M

 Data Flow Graph/Diagram (DFG) Model

 Translates the data processing requirements into a data flow graph

 A data driven model in which the program execution is determined by data.

 Emphasizes on the data and operations on the data which transforms the input data to

output data.

 A visual model in which the operation on the data (process) is represented using a

block (circle) and data flow is represented using arrows. An inward arrow to the

process (circle) represents input data and an outward arrow from the process (circle)

represents output data in DFG notation

 Best suited for modeling Embedded systems which are computational intensive (like

DSP applications)

 A DFG model is said to be acyclic DFG (ADFG) if it doesn’t contain multiple values for

the input variable and multiple output values for a given set of input(s).

 E.g. Model the requirement x = a + b; and y = x – c

+

a b c

-

x

y

Data Flow Node

Data Flow Node

6. What are the basic functions of real time kernel ?Explain each

 List the basic functions of Kernel-5 M

Explanation-5 M

The Real Time Kernel
The kernel of a Real Time Operating System is referred as Real Time kernel. In complement to

the conventional OS kernel, the Real Time kernel is highly specialized and it contains only the

minimal set of services required for running the user applications/tasks. The basic functions of a

Real Time kernel are

– Task/Process management

– Task/Process scheduling

– Task/Process synchronization

– Error/Exception handling

– Memory Management

– Interrupt handling

– Time management

Real Time Kernel – Task/Process Management
Deals with setting up the memory space for the tasks, loading the task’s code into the memory space,

allocating system resources, setting up a Task Control Block (TCB) for the task and task/process

termination/deletion. A Task Control Block (TCB) is used for holding the information corresponding

to a task. TCB usually contains the following set of information

• Task ID: Task Identification Number

• Task State: The current state of the task. (E.g. State= ‘Ready’ for a task which is ready to

execute)

• Task Type: Task type. Indicates what is the type for this task. The task can be a hard real time

or soft real time or background task.

• Task Priority: Task priority (E.g. Task priority =1 for task with priority = 1)

• Task Context Pointer: Context pointer. Pointer for context saving

• Task Memory Pointers: Pointers to the code memory, data memory and stack memory for

the task
• Task System Resource Pointers: Pointers to system resources (semaphores, mutex etc) used

by the task

• Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks)

• Other Parameters Other relevant task parameters

• Task/Process Scheduling: Deals with sharing the CPU among various tasks/processes. A

kernel application called ‘Scheduler’ handles the task scheduling. Scheduler is nothing but

an algorithm implementation, which performs the efficient and optimal scheduling of tasks

to provide a deterministic behavior.

• Task/Process Synchronization: Deals with synchronizing the concurrent access of a

resource, which is shared across multiple tasks and the communication between various

tasks.
• Error/Exception handling: Deals with registering and handling the errors

occurred/exceptions raised during the execution of tasks. Insufficient memory, timeouts,

deadlocks, deadline missing, bus error, divide by zero, unknown instruction execution etc,

are examples of errors/exceptions. Errors/Exceptions can happen at the kernel level services or

at task level. Deadlock is an example for kernel level exception, whereas timeout is an

example for a task level exception. The OS kernel gives the information about the error in the

form of a system call (API).

Memory Management
 The memory management function of an RTOS kernel is slightly different compared to the

General Purpose Operating Systems
 In general, the memory allocation time increases depending on the size of the block of

memory needs to be allocated and the state of the allocated memory block (initialized memory

block consumes more allocation time than un-initialized memory block)
 Since predictable timing and deterministic behavior are the primary focus for an RTOS,

RTOS achieves this by compromising the effectiveness of memory allocation

 RTOS generally uses ‘block’ based memory allocation technique, instead of the usual

dynamic memory allocation techniques used by the GPOS.

 RTOS kernel uses blocks of fixed size of dynamic memory and the block is allocated for a

task on a need basis. The blocks are stored in a ‘Free buffer Queue’.

 Most of the RTOS kernels allow tasks to access any of the memory blocks without any memory

protection to achieve predictable timing and avoid the timing overheads

 RTOS kernels assume that the whole design is proven correct and protection is unnecessary.

Some commercial RTOS kernels allow memory protection as optional and the kernel enters a

fail-safe mode when an illegal memory access occurs

Memory Management
 The memory management function of an RTOS kernel is slightly different compared to the

General Purpose Operating Systems

 A few RTOS kernels implement Virtual Memory concept for memory allocation if the

system supports secondary memory storage (like HDD and FLASH memory).

 In the ‘block’ based memory allocation, a block of fixed memory is always allocated for tasks

on need basis and it is taken as a unit. Hence, there will not be any memory fragmentation

issues.

 The memory allocation can be implemented as constant functions and thereby it consumes

fixed amount of time for memory allocation. This leaves the deterministic behavior of the

RTOS kernel untouched

Interrupt Handling
 Interrupts inform the processor that an external device or an associated task requires immediate

attention of the CPU.

 Interrupts can be either Synchronous or Asynchronous.

 Interrupts which occurs in sync with the currently executing task is known as Synchronous

interrupts. Usually the software interrupts fall under the Synchronous Interrupt category.

Divide by zero, memory segmentation error etc are examples of Synchronous interrupts.

 For synchronous interrupts, the interrupt handler runs in the same context of the interrupting

task.

Asynchronous interrupts are interrupts, which occurs at any point of execution of any task, and

are not in sync with the currently executing task

 The interrupts generated by external devices (by asserting the Interrupt line of the

processor/controller to which the interrupt line of the device is connected) connected to the

processor/controller, timer overflow interrupts, serial data reception/ transmission interrupts etc

are examples for asynchronous interrupts.

 For asynchronous interrupts, the interrupt handler is usually written as separate task (Depends

on OS Kernel implementation) and it runs in a different context. Hence, a context switch

happens while handling the asynchronous interrupts.

 Priority levels can be assigned to the interrupts and each interrupts can be enabled or disabled

individually.

 Most of the RTOS kernel implements ‘Nested Interrupts’ architecture. Interrupt nesting

allows the pre-emption (interruption) of an Interrupt Service Routine (ISR), servicing an

interrupt, by a higher priority interrupt.

Time Management
 Interrupts inform the processor that an external device or an associated task requires immediate

attention of the CPU.

 Accurate time management is essential for providing precise time reference for all

applications
 The time reference to kernel is provided by a high-resolution Real Time Clock (RTC)

hardware chip (hardware timer)
 The hardware timer is programmed to interrupt the processor/controller at a fixed rate. This

timer interrupt is referred as ‘Timer tick’
 The ‘Timer tick’ is taken as the timing reference by the kernel. The ‘Timer tick’ interval may

vary depending on the hardware timer. Usually the ‘Timer tick’ varies in the microseconds

range
 The time parameters for tasks are expressed as the multiples of the ‘Timer tick’

 The System time is updated based on the ‘Timer tick’

 If the System time register is 32 bits wide and the ‘Timer tick’ interval is 1 microsecond, the

System time register will reset in

 2
32

 * 10
-6

/ (24 * 60 * 60) = ~ 0.0497 Days = 1.19 Hours

 If the ‘Timer tick’ interval is 1 millisecond, the System time register will reset in

 2
32

 * 10
-3

 / (24 * 60 * 60) = 497 Days = 49.7 Days =~ 50 Days

Time Management
The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The ‘Timer tick’

interrupt can be utilized for implementing the following actions.

 Save the current context (Context of the currently executing task)

 Increment the System time register by one. Generate timing error and reset the System time

register if the timer tick count is greater than the maximum range available for System time

register

 Update the timers implemented in kernel (Increment or decrement the timer registers for each

timer depending on the count direction setting for each register. Increment registers with count

direction setting = ‘count up’ and decrement registers with count direction setting = ‘count

down’)

 Activate the periodic tasks, which are in the idle state

 Invoke the scheduler and schedule the tasks again based on the scheduling algorithm

 Delete all the terminated tasks and their associated data structures (TCBs)

 Load the context for the first task in the ready queue. Due to the re-scheduling, the ready task

might be changed to a new one from the task, which was pre-empted by the ‘Timer Interrupt’

task

8a) Differentiate between real time system and soft real time system

 Hard Real Time System & Soft Real Time System-Differentiation-5 points – 1 mark each

 [10]

 Design:5 marks
Diagram:5 marks
Hard Real-time System
 A Real Time Operating Systems which strictly adheres to the timing constraints for a

task
 A Hard Real Time system must meet the deadlines for a task without any slippage
 Missing any deadline may produce catastrophic results for Hard Real Time Systems,

including permanent data lose and irrecoverable damages to the system/users
 Emphasize on the principle ‘A late answer is a wrong answer’
 Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are typical

examples of Hard Real Time Systems
 As a rule of thumb, Hard Real Time Systems does not implement the virtual memory

model for handling the memory. This eliminates the delay in swapping in and out the
code corresponding to the task to and from the primary memory

 The presence of Human in the loop (HITL) for tasks introduces un-expected delays in
the task execution. Most of the Hard Real Time Systems are automatic and does not
contain a ‘human in the loop’

Soft Real-time System
 Real Time Operating Systems that does not guarantee meeting deadlines, but, offer

the best effort to meet the deadline
 Missing deadlines for tasks are acceptable if the frequency of deadline missing is

within the compliance limit of the Quality of Service (QoS)

 A Soft Real Time system emphasizes on the principle ‘A late answer is an acceptable
answer, but it could have done bit faster’

 Soft Real Time systems most often have a ‘human in the loop (HITL)’
 Automatic Teller Machine (ATM) is a typical example of Soft Real Time System. If the

ATM takes a few seconds more than the ideal operation time, nothing fatal happens.
 An audio video play back system is another example of Soft Real Time system. No

potential damage arises if a sample comes late by fraction of a second, for play back

 7.) Define process and explain process states and transition diagram

 Process Definition-5 M

Process State Diagram-Explanation-5 M

 [5]

 Process States & State Transition
 The creation of a process to its termination is not a single step operation
 The process traverses through a series of states during its transition from the newly

created state to the terminated state
 The cycle through which a process changes its state from ‘newly created’ to ‘execution

completed’ is known as ‘Process Life Cycle’. The various states through which a
process traverses through during a Process Life Cycle indicates the current status of the
process with respect to time and also provides information on what it is allowed to do
next

Created

Ready

Running

Completed

Blocked

Incepted into memory

S
c
h

e
d

u
le

d
 fo

r

E
x
e

c
u

tio
n

In
te

rr
u

p
te

d
 o

r

P
re

e
m

p
te

d

Waiting for I/O
Waiting for shared Resource

I/O Completion

Shared Resource Acquired

Execution Completion

• Created State: The state at which a process is being created is referred as ‘Created
State’. The Operating System recognizes a process in the ‘Created State’ but no
resources are allocated to the process

• Ready State: The state, where a process is incepted into the memory and awaiting the
processor time for execution, is known as ‘Ready State’. At this stage, the process is
placed in the ‘Ready list’ queue maintained by the OS

• Running State: The state where in the source code instructions corresponding to the
process is being executed is called ‘Running State’. Running state is the state at which
the process execution happens.

• Blocked State/Wait State: Refers to a state where a running process is temporarily
suspended from execution and does not have immediate access to resources. The
blocked state might have invoked by various conditions like- the process enters a wait
state for an event to occur (E.g. Waiting for user inputs such as keyboard input) or
waiting for getting access to a shared resource like semaphore, mutex etc

• Completed State: A state where the process completes its execution
 The transition of a process from one state to another is known as ‘State transition’
 When a process changes its state from Ready to running or from running to blocked or

terminated or from blocked to running, the CPU allocation for the process may also
change

8b). Differentiate between thread and process [10]

Thread & Process –Differentiation-5 points-1 mark each

Thread Process

Thread is a single unit of execution and is part of process. Process is a program in execution and contains one or more threads.

A thread does not have its own data memory and heap

memory. It shares the data memory and heap memory with

other threads of the same process.

Process has its own code memory, data memory and stack memory.

A thread cannot live independently; it lives within the process. A process contains at least one thread.

There can be multiple threads in a process. The first thread

(main thread) calls the main function and occupies the start of

the stack memory of the process.

Threads within a process share the code, data and heap memory. Each

thread holds separate memory area for stack (shares the total stack

memory of the process).

Threads are very inexpensive to create Processes are very expensive to create. Involves many OS overhead.

Context switching is inexpensive and fast Context switching is complex and involves lot of OS overhead and is

comparatively slower.

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are reclaimed by the OS

and all the associated threads of the process also dies.

