

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Course: Operating System IAT-1 Solutions

Code: 15CS64

Question1 : Define Operating Systems. Explain the Dual-mode operations of Operating System

with a neat diagram.

Solutions:

Operating System

An OS is a program that acts as an intermediary between

Computer-user

Computer-hardware

It also provides a basis for application-programs

Goals of OS:

To execute programs.

To make solving user-problems easier.

To make the computer convenient to use.

Some OS are designed to be Convenient , others to be efficient, and others some

combination of the two

The OS (also called kernel) is the one program running at all times on the computer.

Different types of OS:

Mainframe OS is designed to optimize utilization of hardware.

Personal computer (PC) OS supports complex game, business application.

Handheld computer OS is designed to provide an environment in which a

user can easily interface with the computer to execute programs.

Dual-Mode Operation
Since the operating system and the user programs share the hardware and software resources of

the computer system, it has to be made sure that an error in a user program cannot cause problems

to other programs and the Operating System running in the system.

The approach taken is to use a hardware support that allows us to differentiate among various
modes of execution.

The system can be assumed to work in two separate modes of operation:

 user mode and

 kernel mode (supervisor mode, system mode, or privileged mode).

A hardware bit of the computer, called the mode bit, is used to indicate the current mode: kernel (0)

or user (1). With the mode bit, we are able to distinguish between a task that is executed by the

operating system and one that is executed by the user.

When the computer system is executing a user application, the system is in user mode.

When a user application requests a service from the operating system (via a system call), the

transition from user to kernel mode takes place.

At system boot time, the hardware starts in kernel mode. The operating system is then loaded and

starts user applications in user mode. Whenever a trap or interrupt occurs, the hardware switches

from user mode to kernel mode (that is, changes the mode bit from 1 to 0). Thus, whenever the

operating system gains control of the computer, it is in kernel mode.

The dual mode of operation provides us with the means for protecting the operating
system from errant users—and errant users from one another.

The hardware allows privileged instructions to be executed only in kernel mode. If an

attempt is made to execute a privileged instruction in user mode, the hardware does not execute the

instruction but rather treats it as illegal and traps it to the operating system. The instruction to

switch to user mode is an example of a privileged instruction.

Initial control is within the operating system, where instructions are executed in kernel

mode. When control is given to a user application, the mode is set to user mode. Eventually, control

is switched back to the operating system via an interrupt, a trap, or a system call.

b) Timer

Operating system uses timer to control the CPU. A user program cannot hold CPU for a long

time, this is prevented with the help of timer.

A timer can be set to interrupt the computer after a specified period. The period may be

fixed (for example, 1/60 second) or variable (for example, from 1 millisecond to 1 second).

Fixed timer – After a fixed time, the process under execution is interrupted.

Variable timer – Interrupt occurs after varying interval. This is implemented using a fixed-

rate clock and a counter. The operating system sets the counter. Every time the clock ticks, the

counter is decremented. When the counter reaches 0, an interrupt occurs.

Before changing to the user mode, the operating system ensures that the timer is set to interrupt. If

the timer interrupts, control transfers automatically to the operating system, which may treat the

interrupt as a fatal error or may give the program more time.

OS Services

Process Management
A program under execution is a process. A process needs resources like CPU time, memory,
files, and I/O devices for its execution. These resources are given to the process when it is
created or at run time. When the process terminates, the operating system reclaims the resources.

The program stored on a disk is a passive entity and the program under execution is an

active entity. A single-threaded process has one program counter specifying the next instruction

to execute. The CPU executes one instruction of the process after another, until the process

completes. A multithreaded process has multiple program counters, each pointing to the next

instruction to execute for a given thread.

The operating system is responsible for the following activities in connection with process

management:

 Scheduling process and threads on the CPU

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

Memory Management

Main memory is a large array of words or bytes. Each word or byte has its own address.

Main memory is the storage device which can be easily and directly accessed by the CPU. As the

program executes, the central processor reads instructions and also reads and writes data from main

memory.

To improve both the utilization of the CPU and the speed of the computer's response to its

users, general-purpose computers must keep several programs in memory, creating a need for

memory management.

The operating system is responsible for the following activities in connection with memory

management:

Keeping track of which parts of memory are currently being used by user.
Deciding which processes and data to move into and out of memory.

Allocating and deallocating memory space as needed.

Storage Management
There are three types of storage management i) File system management ii) Mass-storage

management iii) Cache management.

File-System Management

File management is one of the most visible components of an operating system. Computers can

store information on several different types of physical media. Magnetic disk, optical disk, and

magnetic tape are the most common. Each of these media has its own characteristics and

physical organization. Each medium is controlled by a device, such as a disk drive or tape drive,

that also has its own unique characteristics.

A file is a collection of related information defined by its creator. Commonly, files

represent programs and data. Data files may be numeric, alphabetic, alphanumeric, or binary. Files

may be free-form (for example, text files), or they may be formatted rigidly (for example, fixed

fields).

The operating system implements the abstract concept of a file by managing mass storage

media. Files are normally organized into directories to make them easier to use. When multiple

users have access to files, it may be desirable to control by whom and in what ways (read, write,

execute) files may be accessed.

The operating system is responsible for the following activities in connection with file management:

 Creating and deleting files

 Creating and deleting directories to organize files

 Supporting primitives for manipulating files and directories

 Mapping files onto secondary storage

 Backing up files on stable (nonvolatile) storage media

Mass-Storage Management

As the main memory is too small to accommodate all data and programs, and as the data

that it holds are erased when power is lost, the computer system must provide secondary storage to

back up main memory. Most modern computer systems use disks as the storage medium for both

programs and data.

Most programs—including compilers, assemblers, word processors, editors, and

formatters—are stored on a disk until loaded into memory and then use the disk as both the

source and destination of their processing. Hence, the proper management of disk storage is of

central importance to a computer system. The operating system is responsible for the following

activities in connection with disk management:

 Free-space management

 Storage allocation

 Disk scheduling

As the secondary storage is used frequently, it must be used efficiently. The entire speed of

operation of a computer may depend on the speeds of the disk. Magnetic tape drives and their

tapes, CD, DVD drives and platters are tertiary storage devices. The functions that operating

systems provides include mounting and unmounting media in devices, allocating and freeing the

devices for exclusive use by processes, and migrating data from secondary to tertiary storage.

Caching
Caching is an important principle of computer systems. Information is normally kept in some

storage system (such as main memory). As it is used, it is copied into a faster storage system—

the cache—as temporary data. When a particular piece of information is required, first we check

whether it is in the cache. If it is, we use the information directly from the cache; if it is not in

cache, we use the information from the source, putting a copy in the cache under the assumption

that we will need it again soon.

Because caches have limited size, cache management is an important design problem. Careful

selection of the cache size and page replacement policy can result in greatly increased performance.

The movement of information between levels of a storage hierarchy may be either explicit

or implicit, depending on the hardware design and the controlling operating-system software. For

instance, data transfer from cache to CPU and registers is usually a hardware function, with no

operating-system intervention. In contrast, transfer of data from disk to memory is usually

controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different levels of the storage

system. For example, suppose to retrieve an integer A from magnetic disk to the processing

program. The operation proceeds by first issuing an I/O operation to copy the disk block on which

A resides to main memory. This operation is followed by copying A to the cache and to an internal

register. Thus, the copy of A appears in several places: on the magnetic disk, in main memory, in the

cache, and in an internal register.

In a multiprocessor environment, in addition to maintaining internal registers, each of the CPUs also

contains a local cache. In such an environment, a copy of A may exist simultaneously in several

caches. Since the various CPUs can all execute concurrently, any update done to the value of A

in one cache is immediately reflected in all other caches where A resides. This situation is called

cache coherency, and it is usually a hardware problem (handled below the operating-system level).

I/O Systems

One of the purposes of an operating system is to hide the peculiarities of specific hardware devices

from the user. The I/O subsystem consists of several components:

 A memory-management component that includes buffering, caching, and spooling

 A general device-driver interface

 Drivers for specific hardware devices
Only the device driver knows the peculiarities of the specific device to which it is assigned.

Protection and Security
If a computer system has multiple users and allows the concurrent execution of multiple

processes, then access to data must be regulated. For that purpose, mechanisms ensure that files,

memory segments, CPU, and other resources can be operated on by only those processes that

have gained proper authorization from the operating system.
If a computer system has multiple users and allows the concurrent execution of multiple processes,
then access to data must be regulated. For that purpose, there are mechanisms which ensure that
files, memory segments, CPU, and other resources can be operated on by only those processes that
have gained proper authorization from the operating system.
For example, memory-addressing hardware ensures that a process can execute only within its
own address space. The timer ensures that no process can gain control of the CPU for a long time.
Device-control registers are not accessible to users, so the integrity of the various peripheral devices
is protected.

Protection is a mechanism for controlling the access of processes or users to the resources
defined by a computer system. This mechanism must provide means for specification of the
controls to be imposed and means for enforcement.
Protection improves reliability. A protection-oriented system provides a means to distinguish

between authorized and unauthorized usage. A system can have adequate protection but still be

prone to failure and allow inappropriate access.

Consider a user whose authentication information is stolen. Her data could be copied or deleted,

even though file and memory protection are working. It is the job of security to defend a system

from external and internal attacks. Such attacks spread across a huge range and include viruses and

worms, denial-of service attacks etc.

Protection and security require the system to be able to distinguish among all its users. Most

operating systems maintain a list of user names and associated user identifiers (user IDs). When a

user logs in to the system, the authentication stage determines the appropriate user ID for the user.

Question2: Distinguish between the following terms:

i) Symmetric & Asymmetric Multiprocessors

ii) ii) Multiprocessor systems and clustered systems.

Solution:

Multiprogramming

One of the most important aspects of operating systems is the ability to multi-program. A single

user cannot keep either the CPU or the I/O devices busy at all times. Multiprogramming increases

CPU utilization by organizing jobs, so that the CPU always has one to execute.

The operating system keeps several jobs in memory simultaneously as shown in
figure. This set of jobs is a subset of the jobs kept in the job pool. Since the
number of jobs that can be kept simultaneously in memory is usually smaller
than the number of jobs that can be kept in the job pool (in secondary memory).
The operating system picks and begins to execute one of the jobs in memory.
Eventually, the job may have to wait for some task, such as an I/O operation, to
complete. In a non-multi-programmed system, the CPU would sit idle. In a
multi-programmed system the operating system simply switches and executes,
another job. When that job needs to wait, the CPU is switched to another job,

and so on.

Eventually, the first job finishes waiting and gets the CPU back. Thus the CPU is never idle.

Multi-programmed systems provide an environment in which the various system resources (for

example, CPU, memory, and peripheral devices) are utilized effectively, but they do not provide for

user interaction with the computer system.

Multitasking

In Time sharing (or multitasking) systems, a single CPU executes multiple jobs by

switching among them, but the switches occur so frequently that the users can interact with each

program while it is running. The user feels that all the programs are being executed at the same

time. Time sharing requires an interactive (or hands-on) computer system, which provides direct

communication between the user and the system. The user gives instructions to the operating system

or to a program directly, using a input device such as a keyboard or a mouse, and waits for

immediate results on an output device. Accordingly, the response time should be short—typically

less than one second.

A time-shared operating system allows many users to share the computer simultaneously. As the

system switches rapidly from one user to the next, each user is given the impression that the entire

computer system is dedicated to his use only, even though it is being shared among many users.

Multiprocessor

A multiprocessor system is a computer system having two or more CPUs within a single computer

system, each sharing main memory and peripherals. Multiple programs are executed by multiple

processors parallel.

Multiprocessor Systems (parallel systems or tightly coupled systems) –

Systems that have two or more processors in close communication, sharing the computer

bus, the clock, memory, and peripheral devices are the multiprocessor systems.

Multiprocessor systems have three main advantages:

1. Increased throughput - In multiprocessor system, as there are multiple processors execution of

different programs take place simultaneously. Even if the number of processors is increased the

performance cannot be simultaneously increased. This is due to the overhead incurred in keeping

all the parts working correctly and also due to the competition for the shared resources. The speed-

http://en.wikipedia.org/wiki/Main_memory

up ratio with N processors is not N, rather, it is less than N. Thus the speed of the system is not has

expected.

2. Economy of scale - Multiprocessor systems can cost less than equivalent number of many

single-processor systems. As the multiprocessor systems share peripherals, mass storage, and

power supplies, the cost of implementing this system is economical. If several processes are

working on the same data, the data can also be shared among them.

3. Increased reliability- In multiprocessor systems functions are shared among several

processors. If one processor fails, the system is not halted, it only slows down. The job of the failed

processor is taken up, by other processors.

Two techniques to maintain ‘Increased Reliability’ - graceful degradation & fault tolerant

 Graceful degradation – As there are multiple processors when one processor fails other

process will take up its work and the system goes down slowly.

 Fault tolerant – When one processor fails, its operations are stopped, the system failure is

then detected, diagnosed, and corrected.

The HP Nonstop system uses both hardware and software duplication to ensure continued

operation despite faults. The system consists of multiple pairs of CPUs. Both processors in the pair

execute same instruction and compare the results. If the results differ, then one CPU of the pair is

at fault, and both are halted. The process that was being executed is then moved to another pair

of CPUs, and the instruction that failed is restarted. This solution is expensive, since it involves

special hardware and considerable hardware duplication.

There are two types of multiprocessor systems –

 Asymmetric multiprocessing
 Symmetric multiprocessing

1) Asymmetric multiprocessing – (Master/Slave architecture) Here each processor is assigned a

specific task, by the master processor. A master processor controls the other processors in the

system. It schedules and allocates work to the slave processors.

2) Symmetric multiprocessing (SMP) – All the processors are considered as peers. There is no
master-slave relationship. All the processors have its own registers and CPU, only memory is
shared.

The benefit of this model is

that many processes can run

simultaneously. N processes

can run if there are N

CPUs—without causing a

significant deterioration of

performance. Operating

systems like Windows, Windows XP, Mac OS X, and Linux—now provide support for SMP.

A recent trend in CPU design is to include

multiple compute cores on a single chip. The

communication between processors within a

chip is faster than communication between

two single processors.

Clustered Systems
Clustered systems are two or more individual systems connected together via network and

sharing software resources. Clustering provides high-availability of resources and services. The

service will continue even if one or more systems in the cluster fail. High availability is generally

obtained by storing a copy of files (s/w resources) in the system.

There are two types of Clustered systems – asymmetric and symmetric

In asymmetric clustering – one system is in hot-standby mode while the others are

running the applications. The hot-standby host machine does nothing but monitor the active server.

If that server fails, the hot-standby host becomes the active server.

In symmetric clustering – two or more systems are running applications, and are

monitoring each other. This mode is more efficient, as it uses all of the available hardware. If any

system fails, its job is taken up by the monitoring system.

Other forms of clusters include parallel clusters and clustering over a wide-area network (WAN).

Parallel clusters allow multiple hosts to access the same data on the shared storage. Cluster

technology is changing rapidly with the help of SAN (storage-area networks). Using SAN

resources can be shared with dozens of systems in a cluster that are separated by miles.

Question3: What is a thread? Explain with a neat diagram. What is the need for multithreaded

processes? Indicate the four major benefits of multithreaded programming.

Solution:
Threads:

A thread is the smallest unit of processing that can be performed in an OS. In most
modern operating systems, a thread exists within a process - that is, a single process
may contain multiple threads.

1. Multi-threaded Programming

• A thread is a basic unit of CPU utilization.

• It consists of

→ thread ID
→ PC

→ register-set and
→a stack.

• It shares with other threads belonging to the same process its code-section & data-section and other OS resources,

such as open files and signals.

• A traditional (or heavy weight) process has a single thread of control.

• If a process has multiple threads of control, it can perform more than one task at a time. Such a process is

called multi-threaded process (Figure 2.1).

Figure 2.1 Single-threaded and
multithreaded processes

2. Motivation
 The software-packages that run on modern PCs are multithreaded. An application is implemented as a separate

process with several threads of control.

 Example1: A word processor may have
o → first thread for displaying graphics
o → second thread for responding to keystrokes and

o → Third thread for performing grammar checking.
 Example2: A web browser may have one thread display images or

text while another thread retrieves data from the network.

 In some situations, a single application may be required to perform several similar tasks.

 Example1: A web-server accepts client requests for web pages,
images, sound, and so forth. In this case the server would create a

separate thread that would listen for client requests and create another

thread to service the request.

 RPC servers are multithreaded.

o When a server receives a message, it services the message using a separate

thread.This allows the server to service several concurrent requests.
 Most OS kernels are multithreaded; Several threads operate in kernel, and each thread performs a specific task,

such as

 → managing devices or
 → interrupt handling.

3. Benefits
1) Responsiveness

• A program may be allowed to continue running even if part of it is blocked. Thus, increasing responsiveness

to the user. For instance, a multithreaded web browser could still allow user interaction in one thread while an

image was being loaded in another thread.
2) Resource Sharing

• By default, threads share the memory (and resources) of the process to which they belong.

Thus, an application is allowed to have several different threads of activity within the same

address-space.

3) Economy
• Allocating memory and resources for process-creation is costly. Thus, it is more economical to create and

context-switch threads. For example, in Solaris, creating a process is about thirty times slower than creating a

thread, and context switching is about five times slower.

4) Utilization of Multiprocessor Architectures
• In a multiprocessor architecture, threads may be running in parallel on different processors.

Thus, parallelism will be increased.

Question4: What is Inter-Process Communication (IPC)? Explain the two basic communication

models of IPC with a neat diagram.

Solution:
Inter Process Communication (IPC)

• Processes executing concurrently in the OS may be 1) Independent processes or

2) Co-operating
processes.

1) A process is independent if

i) The process cannot affect or be affected by the other processes.

ii) The process does not share data with other processes.

2) A process is co-operating if

i) The process can affect or be affected by the other processes.

ii) The process shares data with other processes.

• Advantages of process co-operation:

1) Information Sharing
 Since many users may be interested in same piece of information (ex: shared file).

2) Computation Speedup
 We must break the task into subtasks.

 Each subtask should be executed in parallel with the other subtasks.

 The speed can be improved only if computer has multiple processing elements such as

→ CPUs or
→ I/O channels.

3) Modularity
 Divide the system-functions into separate processes or threads.

4) Convenience
 An individual user may work on many tasks at the same time.

 For ex, a user may be editing, printing, and compiling in parallel.

• Two basic models of IPC (Figure 1.31): 1) Shared-memory and

2) Message passing.

Figure 1.31 Communications models. (a) Message passing. (b) Shared-memory

1. Shared-Memory Systems
• Communicating-processes must establish a region of shared-memory.

• A shared-memory resides in address-space of the process creating the

shared-memory. Other processes must attach their address-space to the

shared-memory.

• The processes can then exchange information by reading and writing data in the shared-memory.

• The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

• Two types of buffers can be used:

1) Unbounded-Buffer places no practical limit on the size of the buffer.

2) Bounded-Buffer assumes that there is a fixed buffer-size.

• Advantages:

1) Allows maximum speed and convenience of communication.

2) Faster.

• For ex, Producer-Consumer Problem for bounded buffer:

 Producer-process produces information that is consumed by a consumer-process.

 The following variables reside in a region of memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10

Typedef struct {…} item;

Item buffer [BUFFER_SIZE];

int in = 0;

int out = 0;

The shared buffer is implemented as a circular array with two logical pointers: in and out.

The variable in points to the next free position in the buffer and out points to the first full position in the
buffer.

The buffer is empty when in = out.

The buffer is full when ((in+1) % BUFFER_SIZE) =out.

The code for producer process is as follows:

item nextProduced;

while (true)

{
 /* Produce an item in nextProduced */

 while (((in = (in + 1) % BUFFER_SIZE) == out); /* do nothing -- no free buffers */

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER SIZE;

 }

The code for consumer process is as follows:
item nextConsumed;

while (true)

{

 while (in == out) ; // do nothing -- nothing to consume

 /*remove an item from the buffer*/

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_ SIZE;

 /*consume the item in nextConsumed*/

 }

From the code, the producer process has a local variable nextProduced in which the new item to be

produced is stored. The consumer process has a local variable nextConsumed in which the item to be

consumed is store.

This scheme allows at most BUFFER_SIZE – 1 items in the buffer at the same time.

2. Message-Passing Systems
• These allow processes to communicate and to synchronize their actions without sharing the same

address-space.

• For example, a chat program used on the WWW.

• Messages can be of 2 types: 1) Fixed size or

2) Variable size.
1) If fixed-sized messages are used, the system-level implementation is simple.

 However, the programming task becomes more difficult.

2) If variable-sized messages are used, the system-level implementation is complex.

 However, the programming task becomes simpler.

• A communication-link must exist between processes to communicate

• Three methods for implementing a link:

1) Direct or indirect communication.

2) Symmetric or asymmetric communication.

3) Automatic or explicit buffering.

• Two operations:

1) send(P,message): Send a message to process P.

2) receive(Q,message): Receive a message from process Q.

• Advantages:

1) Useful for exchanging smaller amounts of data („.‟ No conflicts need be avoided).

2) Easier to implement.

3) Useful in a distributed environment.

4. Naming
• Processes that want to communicate must have a way to refer to each other. They can use either direct

or indirect communication.

http://www/

Direct Communication Indirect Communication

Each process must explicitly name the
recipient/sender.

Messages are sent to/received from
mailboxes (or ports).

Properties of a communication link:

 A link is established automatically between
every pair of processes that want to
communicate. The processes need to know
only each other‟s identity to communicate.
 A link is associated with exactly two
processes.
 Exactly one link exists between each pair
of processes.

Properties of a communication link:

 A link is established between a pair of

processes only if both members have a
shared mailbox.
 A link may be associated with more than
two processes.
 A number of different links may exist

between each pair of communicating
processes.

Symmetric addressing:

 Both sender and receiver processes must
name the other to communicate.

 Primitives:
send (P, message) – send a

message to process P
receive(Q, message) – receive a

message from process Q

Mailbox owned by a process:

 The owner can only receive, and the user
can only send.
 The mailbox disappears when its owner
Process terminates.

Asymmetric addressing:

 Only the sender names the recipient; the
recipient needn't name the sender.
 Primitives:

send (P, message) – send a
message to process P
receive (id, message) – receive a
message from any process; the
variable id is set to the name of
the process with which
communication has taken place.

Mailbox owned by the OS:
 The OS allows a process to:

1. Create a new mailbox
2. Send & receive messages via it
3. Delete a mailbox.

 Primitives:
 send(A, message) – send a message
 to mailbox A
 receive(A, message) – receive a
 message from mailbox A

5. Synchronization
• Message passing may be either blocking or non-blocking (also known as synchronous and

asynchronous).

Synchronous Message Passing Asynchronous Message Passing

Blocking send: Non-blocking send:
 The sending process is blocked until the The sending process sends the message
message is received by the receiving process and resumes operation.
or by the mailbox.

Blocking receive:

 The receiver blocks until a message is
available.

Non-blocking receive:

 The receiver retrieves either a valid
message or a null.

6. Buffering
• Messages exchanged by processes reside in a temporary queue.

• Three ways to implement a queue:

1) Zero Capacity
• The queue-length is zero.

• The link can't have any messages waiting in it.

• The sender must block until the recipient receives the message.

2) Bounded Capacity
• The queue-length is finite.

• If the queue is not full, the new message is placed in the queue.

• The link capacity is finite.

• If the link is full, the sender must block until space is available in the queue.

3) Unbounded Capacity
• The queue-length is potentially infinite.

• Any number of messages can wait in the queue.

• The sender never blocks.

Question5: Illustrate with a neat sketch, the process states and process control block.

Solution:

Process State

A Process has 5 states. Each process may be in one of the following states –

1. New - The process is in the stage of being created.

2. Ready - The process has all the resources it needs to run. It is waiting to be assigned to

the processor.

3. Running – Instructions are being executed.

4. Waiting - The process is waiting for some event to occur. For example the process

may be waiting for keyboard input, disk access request, inter-process messages, a timer to

go off, or a child process to finish.

5. Terminated - The process has completed its execution.

Process Control Block

For each process there is a Process Control Block (PCB), which stores the process-specific

information as shown below –

Process State – The state of the process may be new, ready, running, waiting, and so on.

Program counter – The counter indicates the address of the next instruction to be executed for

this process.

CPU registers - The registers vary in number and type, depending on the computer architecture.

They include accumulators, index registers, stack pointers, and general-purpose registers. Along

with the program counter, this state information must be saved when an interrupt occurs, to allow

the process to be continued correctly afterward.

CPU scheduling information- This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

Memory-management information – This include information such as the value of the base and

limit registers, the page tables, or the segment tables.

Accounting information – This information includes the amount of CPU and real time used, time

limits, account numbers, job or process numbers, and so on.

I/O status information – This information includes the list of I/O devices allocated to the process,

a list of open files, and so on.

The PCB simply serves as the repository for any information that may vary from process to process.

Question6: With a neat diagram of VM-Ware architecture, explain the concept of VM and the

main advantage of using VM architecture

Solution:

VMware

VMware is a popular commercial application that abstracts Intel 80X86 hardware into isolated

virtual machines. The virtualization tool runs in the user-layer on top of the host OS. The virtual

machines running in this tool believe they are running on bare hardware, but the fact is that it is

running inside a user-level application.

VMware runs as an application on a host operating system such as Windows or Linux

and allows this host system to concurrently run several different guest operating systems as

independent virtual machines.

In below scenario, Linux is running as the host operating system; FreeBSD, Windows

NT, and Windows XP are running as guest operating systems. The virtualization layer is the

heart of VMware, as it abstracts the physical hardware into isolated virtual machines running as

guest operating systems. Each virtual machine has its own virtual CPU, memory, disk drives,

network interfaces, and so forth.

VMware architecture

Question7: What are system calls? Briefly point out its types.

Solution:

System calls is a mean to access the services of the operating system. Generally written in C or

C++, although some are written in assembly for optimal performance.

Types of System Calls: The system calls can be categorized into six major categories:

 Process Control

 File management

 Device management

 Information management

 Communications

 Protection

