

 USN

Internal Assessment Test I – March 2019

Sub: Python Application Programming
Sub

Code:
15CS664

Branch

:

ISE/ECE/TCE/E

EE

Date: 07/03/2019 Duration: 90 mins
Max

Marks:
50

Sem/Sec

:
6th Sem Open Elective OBE

Answer any FIVE FULL Questions

MARK

S

CO RB

T

1 (a) List and briefly explain the building blocks of programs

Scheme: Listing all 6 building blocks of a program - 1M

 Explaining the 6 blocks – 3M

Solution:

➢ A program is a sequence of Python statements that is intended to do

something.

➢ We use some general constructs while writing a program. These constructs

are not just for Python programs, they are part of every programming language

from machine language to high-level languages.

• Input: Get data from “outside world”. It can be reading data from a

file or some kind of sensor like a microphone or GPS. Generally input

will be given from the user through keyboard.

• Output: Display the result of the program on the screen or store them

in a file or write them to a device like a speaker to play music or speak

text.

• Sequential Execution: Statements are executed one after the other in

the order they appear in the script.

• Conditional Execution: Check for certain conditions and based on

that either execute or skip a sequence of statements.

• Repeated Execution: Repeat some set of statements, usually with

some variation.

• Reuse: Write a set of instructions/statements once and give them a

name, then reuse those instructions in the program whenever needed.

[04] CO1 L1

 (b) Bring out the differences between the following

i) syntax errors, logic errors and semantic errors.

ii) interpreter and compiler

Scheme: Syntax Errors – 1M

 Logic Error – 1M

 Semantic Error – 1M

 Interpreter – 1.5M

 Compiler 1.5M

[06] CO1 L2

Solution:

➢ Syntax Errors: A syntax error means that you have violated the

“grammar” rules of Python.

OR

Syntax refers to the structure of a program or the rules about that

structure.

Python points right at the line and character where the error occurred.

Sometimes the mistake that needs to be fixed is actually earlier in the

program than where python noticed. So the line and character that

Python indicates in a syntax error may just be a starting point of our

investigation. The syntax errors are easy to fix.

Examples: missing colon, commas or brackets, misspelling a

keyword, incorrect indentation and so on.

➢ Logic Errors: A logic error is when the program is syntactically

correct but there is a mistake in the order of statements or mistake in

how the statements relate to one another. It causes the program to

operate incorrectly. It produces unintended or undesired output.

These are difficult to fix.

Examples: indenting a block to a wrong level, using integer division

instead of floating-point division, wrong operator precedence and so

on.

➢ Semantic Errors: An error in a program that makes it to do

something other than what the programmer intended.

 OR

A semantic (meaning) error is when the program is syntactically

correct and in the right order, but there is simply a mistake in the

program.

Example: Colourless green ideas sleep furiously – This is

grammatically correct but cannot be combined into one meaning.

OR

A semantic error is a violation of the rules of meaning of a natural

language or a programming language.

Summary

✓ Syntax relate to spelling and grammar.

If the code fails to execute due to typos, invalid names, a missing

parenthesis or some other grammatical flaw, you have a syntax error.

✓ Logic relate to program flow.

If the syntax is correct but a piece of code is (inadvertently) never

executed, operations are not done in the correct order, the operation itself

is wrong or code is operating on the wrong data, you have a logical error.

Using a wrong conditional operator is a common example, so is

inadvertently creating an infinite loop or mixing up (valid) names of

variables or functions.

✓ Semantics relate to meaning and context.

If both your program logic and syntax is correct so the code runs as

intended, but the result is still wrong: you likely have a semantic error.

Interpreter Compiler

Translates program one statement at

a time.

 Scans the entire program and translates

it as a

 whole into machine code

It takes less amount of time to

analyze the

It takes large amount of time to analyze

the

source code but the overall

execution time is

source code but the overall execution

time is

 slower. comparatively faster.

No intermediate object code is

generated,

Generates intermediate object code

which

hence are memory efficient.

further requires linking, hence requires

more

 memory.

Continues translating the program

until the

It generates the error message only

after

first error is met, in which case it

stops. Hence

scanning the whole program. Hence

debugging

debugging is easy. is comparatively hard

Programming language like

Python, Ruby use

Programming language like C, C++

use

interpreters. compilers.

2 (a) Write a program which prompts the user for a Celsius temperature, convert the

temperature to Fahrenheit, and print out the converted temperature.

Scheme: Input – 1M

 Formula – 1M

 Output – 1M

 Sample run – 1M

Solution:

#Program to convert temperature from celsius to farenheit.

cel = float(input("Enter temperature in celsius: "))

far = ((9/5)*cel)+32

print("The temperature in farenheit is: ",far)

Output:

Enter temperature in celsius: 33

The temperature in farenheit is: 91.4

[04] CO1 L3

 (b) Briefly explain how to catch exceptions and short-circuit evaluation of logical

expressions is done in python with code snippets.

Scheme: try and except syntax – 2M

 try and except example – 1M

 Short-circuit evaluation of logical expression explain – 1M

 Short-circuit evaluation of logical expression explain – 2M

Solution:

➢ An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program.

➢ In general, when a Python script encounters a situation that it cannot cope

with, it raises an exception. When a Python script raises an exception, it must

either handle the exception immediately otherwise it terminates and quits.

➢ For example:

Python program to demonstrate an exception.

a = int(input('Enter a: '))

b = int(input('Enter b: '))

res = a/b

print(res)

Output:

I. Enter a: 10

Enter b: 5

2.0

II. Enter a: 4

Enter b: 0

Traceback (most recent call last):

 File"C:/Users/akhil/AppData/Local/Programs/Python/Python36

32/tryexcept.py", line 6, in <module>

 res = a/b

ZeroDivisionError: division by zero → This

is an exception

➢ The idea of try and except is that you know that some sequence of

instruction(s) may have a problem and you want to add some statements

to be executed if an error occurs. These

extra statements (the except block) are ignored if there is no error.

➢ You can think of the try and except feature in Python as an “insurance

policy” on a sequence of statements.

[06] CO1 L1

➢ Python starts by executing the sequence of statements in the try block. If

all goes well, it skips the except block and proceeds. If an exception occurs

in the try block, Python jumps out of the try block and executes the

sequence of statements in the except block.

➢ We can rewrite the above program to handle exceptions as follows:

Python program to demonstrate catching an exception using try and

catch.

a = int(input('Enter a: '))

b = int(input('Enter b: '))

try:

 res = a/b

 print(res)

except:

 print('Divide by Zero Exception!!!')

Output:

I. Enter a: 8

Enter b: 0

Divide by Zero Exception!!!

II. Enter a: 53

Enter b: 35

1.5142857142857142

➢ Handling an exception with a try statement is called catching an

exception.

➢ When Python is processing a logical expression such as x >= 2 and (x/y)

> 2, it evaluates the expression from left to right. Because of the definition

of and, if x is less than 2, the expression x >= 2 is False and so the whole

expression is False regardless of whether (x/y) > 2 evaluates to True or False.

➢ When Python detects that there is nothing to be gained by evaluating the

rest of a logical expression, it stops its evaluation and does not do the

computations in the rest of the logical expression. When the evaluation of

a logical expression stops because the overall value is already known, it is

called short-circuiting the evaluation.

➢ While this may seem like a fine point, the short-circuit behaviour leads to

a clever technique called the guardian pattern.

➢ Consider the following code sequence in the Python interpreter:

>>> x = 6

>>> y = 2

>>> x >= 2 and (x/y)>2

True

>>> x = 1

>>> y = 0

>>> x >= 2 and (x/y) > 2

False

>>> x = 6

>>> y = 0

>>> x >= 2 and (x/y) > 2

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

• The third calculation failed because Python was evaluating (x/y) and y

was zero, which causes a runtime error.

• But the second example did not fail because the first part of the expression

x >= 2 evaluated to False so the (x/y) was not ever executed due to the

short-circuit rule and there was no error.

➢ We can construct the logical expression to strategically place a guard

evaluation just before the evaluation that might cause an error as follows:

>>> x = 1

>>> y = 0

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x = 6

>>> y = 0

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x >= 2 and (x/y) > 2 and y != 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

• In the first logical expression, x >= 2 is False so the evaluation stops at the

and.

• In the second logical expression, x >= 2 is True but y != 0 is False so we

never reach (x/y).

• In the third logical expression, the y != 0 is after the (x/y) calculation so

the expression fails with an error.

• In the second expression, we say that y != 0 acts as a guard to insure that

we only execute (x/y) if y is non-zero.

3 (a) Briefly explain why we need functions in program? And write the syntax to create

functions in python?

Scheme: 3 Advantages – 3M

 Function syntax – 2M

 Example - 1M

Solution:

➢ Creating a new function gives you an opportunity to name a group of

statements, which makes your program easier to read, understand, and

debug.

[6]

CO1

L1

➢ Functions can make a program smaller by eliminating repetitive code.

Later, if you make a change, you only have to make it in one place.

➢ Dividing a long program into functions allows you to debug the parts one

at a time and then assemble them into a working whole.

➢ Well-designed functions are often useful for many programs. Once you write

and debug one, you can reuse it.

➢ A function definition specifies the name of a new function and the

sequence of statements that execute when the function is called.
➢ def keyword is used to define the function (marks the start of function header).

➢ A function name to uniquely identify it. Function naming follows the same

rules of writing variable names (identifiers) in Python.

• Letters, numbers and some punctuation marks are legal, but the

first character can’t be a number.

• You can’t use a keyword as the name of a function.

• Avoid having a variable and a function with the same name.

➢ Parameters (arguments) through which we pass values to a function.

They are optional. The empty parentheses after the name indicate that this

function doesn’t take any arguments.

➢ A colon (:) to mark the end of function header.

➢ The first statement of a function can be an optional statement - the

documentation string (docstring) to describe what the function does.

➢ One or more valid python statements that make up the function body.

The body can contain any number of statements.
➢ Statements must have same indentation level (usually 4 spaces).

➢ An optional return statement to return a value from the function.

➢ The general syntax of defining a function is:
def function_name (parameters/arguments):

 “””docstring””” → Optional

 Statement 1

 Statement 2 Body of the function

 …

 Statement n
 For Example:

 def print_lyrics():

print(‘Haan hum badalne lage, Girne sambhalne lage’)

print(‘Jab se hai jaana tumhein, Teri ore chalne lage’)

➢ If you type a function definition in interactive mode, the interpreter prints

ellipses (. . .) to let you know that the definition isn’t complete. To end the

function, you have to enter an empty line (this is not necessary in a script).

>>> def print_lyrics():

... print('Haan hum badalne lage, Girne sambhalne lage')

... print('Jab se hain jaana tumhein, Teri ore chalne lage')

https://www.programiz.com/python-programming/keywords-identifier#rules

...

Note: The below is an example that shows an error if you are not indenting the

statements after the

 Function.

 header

>>> def print_lyrics():

... print(‘Jab se hai jaana tumhein, Teri ore chalne lage’)

 File "<stdin>", line 2

 print(‘Jab se hai jaana tumhein, Teri ore chalne lage’)

 ^

IndentationError: expected an indented block

➢ Defining a function creates a variable with the same name.

>>> print(print_lyrics)

<function print_lyrics at 0x05916228>

➢ The value of print_lyrics is a function object, which has type “function”.
>>> print(type(print_lyrics))

<class 'function'>

➢ A function call is a statement that executes a function. It consists of the

function name followed by an argument list.
➢ The general syntax of calling a function is:

function_name(parameters/arguments)
➢ For Example:

>>> print_lyrics() → Function call

Haan hum badalne lage, Girne sambhalne lage

Jab se hain jaana tumhein, Teri ore chalne lage

➢ Once you have defined a function, you can use it inside another function.
>>> def repeat_lyrics():

... print_lyrics() → Function call

... print_lyrics() → Function call

...

>>> repeat_lyrics() → Function call

Haan hum badalne lage, Girne sambhalne lage

Jab se hain jaana tumhein, Teri ore chalne lage

Haan hum badalne lage, Girne sambhalne lage

Jab se hain jaana tumhein, Teri ore chalne lage

 (b) Explain any 5 built in functions in python with examples.

Scheme: Any 5 built in functions with syntax and example : 4M

Solution:

➢ Python provides a number of important built-in functions that we can use

without needing to provide the function definition.

[4] CO1 L1

➢ The max and min gives the largest and smallest element in the list

respectively.

For Example:

>>> max('Hello World')

'r'

>>> min('Hello World')

' '

>>> max(10,45,67,6,-6,348.6,58)

348.6

>>> min(10,45,67,6,-6,348.6,58)

-6

The max function tells us the “largest character” in the string (which

turns out to be the letter “r”) and the min function shows us the smallest

character (which turns out to be a space).

➢ len function which tells us how many items are in its argument.

For Example:

If the argument to len is a string, it returns the number of characters

in the string.

>>> len('Hello World')

11

>>> list = [10, 325, 52, 25, 55.2, 436]

>>> print(len(list))

6

>>> len(10,45,67,6,-6,348.6,58)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: len() takes exactly one argument (7 given)

➢ The int function takes any value and converts it to an integer, if it can, or

complains otherwise:
For Example:

• >>> int('32') → When 32 is passed as string it converts it

into integer.

32

• >>> int('hello') → Gives an error.

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'hello'

➢ int can convert floating-point values to integers, but it doesn’t round off; it

chops off the fraction part.
For Example:

• >>> int(4.1926345)

4

• >>> int(-2.6035)

-2

• >>> int('25')

25

• >>> int('6.62536') → When 6.62536 (floating-point) is

passed as string it Traceback (most recent call last):

gives an error.

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '6.62536'

➢ float converts integers and strings to floating-point numbers.

For Example:

• >>> float(32)

32.0

• >>> float('3.1412')

3.1412

• float('hello')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: could not convert string to float: 'hello'

➢ str converts its argument to a string.
For Example:

• >>> str(32)

'32'

• >>> str('3.1412')

'3.1412'

4 (a) Write a program to prompt for a score between 1 to 100. If the score is out of range,

print an error message. If the score is between 1 to 100, print the grade using the

following table:

Score Grade

>=90 A

>=80 B

>=70 C

>=60 D

<60 E

Note: Run the program repeatedly till an invalid value is entered.

Scheme: Input - 1M

 Score validation – 1M

 While loop – 2M

 Conditions – 4M

 Output – 1M

 Sample run – 1M

 [10] CO1 L3

Solution:

#Program to prompt score and find out grade.

while(True):

 score = float(input('Enter the score: '))

 if score < 0 or score > 1.0 :

 print('Error, Score out of range')

 break

 else:

 if score >= 0.9 and score <= 1.0 :

 print('Grade A')

 elif score >= 0.8 and score < 0.9 :

 print('Grade B')

 elif score >= 0.7 and score < 0.8 :

 print('Grade C')

 elif score >= 0.6 and score < 0.7 :

 print('Grade D')

 elif score >= 0 and score <0.6 :

 print('Fail')

Output:

Enter the score: 0.5

Fail

Enter the score: 0.8

Grade B

Enter the score: 0.9

Grade A

Enter the score: 0.65

Grade D

Enter the score: 1.5

Error, Score out of range

5 (a)

Briefly explain the iteration statements in python with code snippets. With an

example explain the use of break, continue and pass keywords in iteration and

conditional statements.

Scheme: while statement syntax and example – 2.5 Marks

 for statement syntax and example – 2.5 Marks

 break statement syntax and example – 2 Marks

 continue statement syntax and example – 2 Marks

 pass statement syntax and example – 1 Marks

Solution:

➢ A set of statements that are executed repeatedly until a condition is

satisfied is called a loop. When a condition is not satisfied then the loop

is terminated. It useful in performing repetitive tasks.

➢ Whenever we want to do some task repeatedly we use while statement.

[10] CO1 L2

➢ The syntax of while statement is:

while expression :

 Statement 1

 Statement 2

 …..

 Statement n

Statement(s)

➢ The flow of execution of while statement is:

i. Evaluate the condition, which results in either True or False.

ii. If the condition is False, exit the while statement and continue

execution at the next statement.

iii. If the condition is True, then execute the body and then goto step

1.

✓ This type of flow is called loop, since the third step loops back to

the top.

✓ Each time we execute the body of the loop we call it an iteration.

✓ The body of the loop should change the value of one or more

variables so that eventually the condition becomes false and the

loop terminates. We call the variable that changes each time the

loop executes and controls when the loop finishes the iteration

variable.

✓ If there is no iteration variable, the loop will repeat forever,

resulting in an infinite loop.

➢ The flowchart of while statement is:

➢ Consider a simple program that counts from 5 to 1.

n = 5

while n > 0 :

 print(n)

 n = n - 1

print("Good Bye!!!")

Output:

expressio

n

Tru

e

Fals

e

statement(s)

statement(s)

5

4

3

2

1

Good Bye!!!

While n is greater than 0, display the value of n and then decrement the value

of n by 1. When you get to 0, exit the while statement and display “Good

Bye!!!”.

➢ The for loop in Python is used to iterate over a sequence (list, tuple,

string) or other iterable objects.

➢ The syntax of for loop is:

for variable_name in sequence:

 Statement 1

 Statement 2

 …..

 Statement n

Statement(s)

• Here, variable_name is the variable that takes the value of the item

inside the sequence on each iteration.

• Loop continues until we reach the last item in the sequence.

• The body of for loop is separated from the rest of the code using

indentation.

➢ The flowchart of while statement is:

➢ Consider a program to print each character in a word.

for letter in 'python':

 print(letter)

Output:

last item

reached?

Tru

e

Fals

e

statement(s)

statement(s)

for each item in

sequence

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

p

y

t

h

o

n

➢ Loops iterate over a block of code until test expression is false, but

sometimes we wish to terminate the current iteration or even the whole loop

without checking test expression.
➢ Break statement is a jump statement which is used to transfer execution

control.

➢ It terminates the current loop and resumes execution at the next

statement.
➢ The general syntax of break statement is:

break

➢ Consider the following examples:

• for var in 'python':

 if var == 't':

 break

 print(var)

print('End of program!!!')

Output:

p

y

End of program!!!

• for i in range(10):

 if i == 5:

 break

 print(i)

print('End of program!!!')

Output:

 0

1

2

3

4

End of program!!!

• #To check if 11 is prime or not.

n=11

flag = 0

for i in range(2,n):

 if n%i == 0:

 flag = 1

 break

if flag == 1:

 print('Not Prime number')

else:

 print('Prime number')

Output:

Prime number

➢ The continue statement is used to skip the rest of the code inside a loop

for the current iteration only. Loop does not terminate but continues on

with the next iteration.

➢ The general syntax of continue statement is:

continue

➢ Consider the following examples:

• for var in 'python':

 if var == 't':

 continue

 print(var)

print('End of program!!!')

Output:

 p

y

h

o

n

End of program!!!

• for i in range(10):

 if i == 5:

 continue

 print(i)

print('End of program!!!')

Output:

0

1

2

3

4

6

7

8

9

End of program!!!

Note: Loop control/Jump statements can be used only within the

loops.

➢ Sometimes, it is useful to have a body with no statements (usually as a

place holder for code you haven’t written yet). In that case, you can use

the pass statement, which does nothing.

For example:

 if n < 0 :

 pass # need to handle negative values

6 (a) Write a program to prompt the user to enter a list of values (eg: [3,41,12,9,74,15]),

where these values are passed as a parameter for minimum and maximum functions.

Process the list and display the minimum value and maximum value in the list of

values.

Note: Do not use built in functions for get min and max values.

Scheme: Input – 2M

 Min user defined function – 2M

 Max user defined function – 2M

 Function call – 2M

 Output – 1M

 Sample runs – 1M

Solution:

#Function definition to find minimum number in a list.

def min(values):

 smallest = None

 for value in values:

 if smallest is None or value < smallest:

 smallest = value

 return smallest

#Function definition to find maximum number in a list.

def max(values):

 largest = None

 for value in values:

 if largest is None or value > largest:

 largest = value

 return largest

num = [25, 58, 78, 19, -84, 67, 412, -15]

min_no = min(num)

print("Minimum number is the list is: ", min_no)

max_no = max(num)

print("Maximum number is the list is: ", max_no)

Output:

Minimum number is the list is: -84

Maximum number is the list is: 412

 [10] CO1 L3

7 (a) Explain the conditional statements, chained conditionals statements, nested

conditional statements with code snippets.

Scheme: Conditional statement syntax – 1M

 Conditional statement explain and example – 1M

 Chained conditional statement syntax – 1M

[06] CO1 L3

 Chained conditional statement explain and example – 1M

 Nested conditional statement syntax – 1M

 Nested conditional statement explain and example – 1M

Solution:

➢ Conditional statements gives the ability to check conditions change the

behaviour of the program accordingly.

➢ Decision making is required when we want to execute a code only if a

certain condition is satisfied.

➢ The syntax of if-statement is:

if expression :

 statement-block-1

 statement-block-2

The boolean expression after the if statement is called the condition. We

end the if statement with a colon character (:) and the line(s) after the if

statement are indented.
➢ The expression is evaluated to either True or False.

• If True then the intended statements (statement-block-1) get

executed and the control comes outside the if statement and the

execution of further statements (statement-block-2) continues if

any.

• If the expression is evaluated to be false, then intended block

(statement-block-1) is skipped.

➢ There is no limit on the number of statements that can appear in the body,

but there must be at least one.
➢ Note: Parenthesis can be used for the expression in the if statement but it

is optional.
➢ The flowchart is shown below:

➢ Python interprets non-zero values as True. None and 0 are interpreted

as False.

➢ # Python program to check if a given number is positive.

n = int(input('Enter a number: '))

expressio

n

Tru

e

Fals

e

statement-block-

1

statement-block-

2

if n > 0 :

 print('Positive')

print('Bye')

Output:

I. Enter a number: 10

Positive

Bye

II. Enter a number: -74

Bye

III. Enter a number: 0

Bye

➢ It is multi-way selection statement. It is used when we have to make a

choice among many alternatives. One way to express a computation like

that is a chained conditional.

➢ The syntax of else-if statement is:

if expression-1 :

 statement-block-1

 elif expression-2 :

 statement-block-2

 elif expression-3 :

 statement-block-3

 elif expression-4 :

 statement-block-4

 elif expression-5 :

 statement-block-5

statement-block-6

 Note: elif is an abbreviation of “else if”

➢ The expression is evaluated in top to bottom order. If an expression is

evaluated to true, then the statement-block associated with that

expression is executed and the control comes out of the entire else if

ladder and continues execution from statement-block-6 if any.

➢ There is no limit on the number of elif statements. If there is an else clause,

it has to be at the end, but there doesn’t have to be one.
➢ For example:

• If expression-1 is evaluated to true, then statement-block-1 is

executed and the control comes out of the entire else if ladder and

continues execution from statement-block-6 if any.

• If expression-1 is evaluated to false, then expression-2 is

evaluated. If expression-2 is evaluated to true then statement-

block-2 is executed and the control comes out of the entire else if

ladder and continues execution from statement-block-6 if any.

• If all the expressions are evaluated to false, then the last

statement-block-5 (default) is executed and the control comes out

of the entire else if ladder and continues execution from

statement-block-6 if any.

➢ The flowchart is shown below:

➢ # Python program to check if a number is positive, negative or zero.

n = int(input('Enter the number: '))

if n > 0 :

 print('The number',n,'is Positive')

elif n < 0 :

 print('The number',n,'is Negative')

else :

 print('The number',n,'is Zero')

print('Good Bye')

Tru

e

Tru

e

Tru

e

Fals

e

Fals

e

Fals

e

Fals

e

expression-

1

expression-

2

expression-

3

expression-

4

statement-block-5

(default statement-

block)

statement-block-

4

statement-block-

3

statement-block-

2

statement-block-

1

statement-block-

6

Tru

e

Output:

I. Enter the number: 0

The number 0 is Zero

Good Bye

II. Enter the number: 73

The number 73 is Positive

Good Bye

III. Enter the number: 0

The number 0 is Zero

Good Bye

➢ It is used when an action has to be performed based on many decisions.

➢ An if-else statement within another if-else statement is called nested if-

else statement.

➢ The syntax of nested if-else statement is:

if expression-1 :

 if expression-2 :

 statement-block-1

 else :

 statement-block-2

else

 if expression-3 :

 statement-block-3

 else :

 statement-block-4

statement-block-5

➢ The expression-1 is evaluated to true or false.

• If expression-1 is evaluated to true, then expression-2 is evaluated

to true or false. If expression-2 is evaluated to true, then statement-

block-1 is executed. If expression-2 is evaluated to false, then

statement-block-2 is executed.

• If expression-1 is evaluated to false, then expression-3 is evaluated

to true or false. If expression-3 is evaluated to true, then statement-

block-3 is executed. If expression-3 is evaluated to false, then

statement-block-4 is executed.

In either of the cases, after execution of a particular statement-block the

control comes outside the nested if-else statement and continues execution

from statement-block-5.

➢ Although the indentation of the statements makes the structure apparent,

nested conditionals become difficult to read very quickly. In general, it is a

good idea to avoid them when you can.
➢ The flowchart is shown below:

expression- expression-

expression-

1

Fals

e

Fals

e
Fals

e

Tru

e

Tru

e

Tru

e

➢ # Python program to check if a number is lesser, greater or equal to

another number.

x = int(input('Enter X: '))

y = int(input('Enter Y: '))

if x == y :

 print('X and Y are Equal')

else :

 if x < y :

 print('X is lesser than Y')

 else :

 print('X is greater than Y')

Output:

I. Enter X: 6

Enter Y: 9

X is lesser than Y

II. Enter X: 84

Enter Y: 62

X is greater than Y

III. Enter X: 5

Enter Y: 5

X and Y are Equal

 (b) Briefly explain few built in functions in math module and random module with

examples.

Scheme: math module – 2M

 random module – 2M

Solution:

[04] CO1 L1

import math

#math.ceil(x) function.

print('Ceiling function:', math.ceil(23.56))

print('Ceiling function:', math.ceil(-23.56))

print('Ceiling function:', math.ceil(12.32))

print('Ceiling function:', math.ceil(-12.32))

print('\n')

#math.floor(x) function.

print('Floor function:', math.floor(23.56))

print('Floor function:', math.floor(-23.56))

print('Floor function:', math.floor(12.32))

print('Floor function:', math.floor(-12.32))

print('\n')

#math.factorial(x) function.

print('Factorial Function:', math.factorial(15))

#print('Factorial Function:', math.factorial(5.2)) --> Gives a valueError exception

#print('Factorial Function:', math.factorial(-75.34)) --> Gives a valueError exception

print('\n')

#math.fabs(x) function.

print('Fabs Function:', math.fabs(-876.54))

print('Fabs Function:', math.fabs(-7235))

print('\n')

#math.gcd(x,y) function.

print('Greatest Common Divisor:', math.gcd(10,24))

#print('Greatest Common Divisor:', math.gcd(12.30,24)) --> Gives an error

print('Greatest Common Divisor:', math.gcd(-10,24))

print('\n')

#math.exp(x) function i.e., e**x.

print('Exponent function:', math.exp(34))

print('Exponent function:', math.exp(-67.45))

print('\n')

#math.pow(x,y) function i.e., x**y.

print('Power function:', math.pow(2,31))

print('Power function:', math.pow(2,-8))

print('Power function:', math.pow(12.5,53.5))

print('\n')

#math.sqrt(x) fubction.

print('Square root function:', math.sqrt(625))

#print('Square root function:', math.sqrt(-3984)) --> Gives ValueError exception

print('Square root function:', math.sqrt(2467.38))

print('\n')

print('Sin function:', math.sin(64.47))

print('Cos function:', math.cos(64.47))

print('Tan function:', math.tan(64.47))

print('\n')

#math.log2(x) function.

print('Log2 function:', math.log2(25))

#print('Log2 function:', math.log2(-25.8)) --> Gives ValueError exception

print('Log2 function:', math.log2(43.769))

print('\n')

#math.log10(x) function.

print('Log10 function:', math.log10(25))

#print('Log10 function:', math.log10(-25.8)) --> Gives ValueError exception

print('Log10 function:', math.log10(43.769))

print('\n')

print('Degrees to radians:', math.radians(90))

print('Radians to degrees:', math.degrees(1.5707))

print('\n')

#Constants

print('The value of pi:', math.pi)

print('The value of e:', math.e)

print('The value of tau:', math.tau)

Output:

Ceiling function: 24

Ceiling function: -23

Ceiling function: 13

Ceiling function: -12

Floor function: 23

Floor function: -24

Floor function: 12

Floor function: -13

Factorial Function: 1307674368000

Fabs Function: 876.54

Fabs Function: 7235.0

Greatest Common Divisor: 2

Greatest Common Divisor: 2

Exponent function: 583461742527454.9

Exponent function: 5.0913997350542235e-30

Power function: 2147483648.0

Power function: 0.00390625

Power function: 4.8382209306170583e+58

Square root function: 25.0

Square root function: 49.67272893651002

Sin function: 0.9977328054584116

Cos function: -0.06729969473992774

Tan function: -14.825220371563946

Log2 function: 4.643856189774724

Log2 function: 5.451837517668948

Log10 function: 1.3979400086720377

Log10 function: 1.6411666243046132

Degrees to radians: 1.5707963267948966

Radians to degrees: 89.9944808811984

The value of pi: 3.141592653589793

The value of e: 2.718281828459045

The value of tau: 6.283185307179586

➢ Python offers random module that can generate random numbers.

1. For Integers:

 Syntax :

 random.randrange (start(opt), stop, step(opt))

 Parameters :

 start(opt) : Number consideration for generation starts from this, default

 value is 0. This parameter is optional.

 stop : Numbers less than this are generated. This parameter is mandatory.

 step(opt) : Step point of range, this won't be included. This is optional.

 Default value is 1.

 Return Value :

 This function generated the numbers in the sequence start-stop skipping

 step.

 Exceptions :

 Raises ValueError if stop <= start and number is non- integral.

✓ random.randrange(stop)

import random

print(random.randrange(30))

 Output:

I. 5

II. 2

III. 21

IV. 27

✓ random.randrange(start, stop[, step])

Return a randomly selected element from range(start, stop, step).

Note: [] means optional.

Program

import random

Using randrange() to generate numbers from 50-100

print ("\nRandom number from 50-100 is : ")

print (random.randrange(50,100))

Using randrange() to generate numbers from 50-100 skipping 5

print ("\nRandom number from 50-100 skip 5 is : ")

print (random.randrange(50,100,5))

#Throws exception

#print (random.randrange(50,10))

#print (random.randrange(50.3,100))

Output:

I. Random number from 50-100 is :

95

Random number from 50-100 skip 5 is :

75

II. Random number from 50-100 is :

60

Random number from 50-100 skip 5 is :

55

✓ random.randint(a,b)

Return a random integer N such that a <= N <= b

import random

print(random.randint(1,100)) → Inclusive of 1 and 100.

Output:

I. 96

II. 76

III. 15

2. For Real/Floating:

✓ random.random()

Return the next random floating point number in the range (0.0, 1.0) i.e., excluding

1.0.

import random

print(random.random())

Output:

I. 0.48644020748452865

II. 0.9207854756869541

III. 0.8515254897126728

✓ random.uniform(a,b)

Return a random floating point number N such that a <= N <= b for a <= b and b <= N

<= a for b < a.

The end-point value b may or may not be included in the range depending on floating-

point rounding in the equation a + (b-a) * random().

import random

print(random.uniform(1,100))

Output:

I. 51.433547569607704

II. 90.0503177294139

III. 14.294244323244204

3. For Sequences

✓ random.choice(seq)

Return a random element from the non-empty sequence seq (list, tuple or string). If

seq is empty, raises Index Error.

Program:

https://docs.python.org/2/library/exceptions.html#exceptions.IndexError

 import random

color_list = ['Red', 'Blue', 'Green', 'White', 'Black']

print(random.choice(color_list))

print(random.choice([1, 2, 3, 4, 5,6]))

print(random.choice('Python Application Programming'))

my_list = [2, 109, False, 10, "Lorem", 482, "Ipsum"]

print(random.choice(my_list))

 Output:

I. Black

1

y

Lorem

II. Green

5

m

10

III. White

1

y

482

