

USN

Internal Assessment Test 1 – March 2019

Sub

:
Python Application Programming Sub Code: 15CS664 Branch: CSE

Date: 07/03/2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: 6th A/B / C OBE

Answer any FIVE FULL Questions
MAR

KS

CO RBT

1 (a) Explain the following:

i)Skills necessary for a programmer ii) Interactive mode

iii)Short Circuit evaluation of expression iv) Modulus Operator

i) Knowledge about Programming Language

 Vocabulary and Grammar

 i.e. Awareness about syntax and right standard of programming

Problem solving skill

 How to frame solutions for a given problem

ii) Python has two basic modes: normal and interactive. The normal mode is the

mode where the scripted and finished .py files are run in the Python interpreter.

Interactive mode is a command line shell which gives immediate feedback for each

statement, while running previously fed statements in active memory.

iii) Evaluate the following Logical Expression for x=1 and x=8 having y=2:

x>=2 and (x/y)>2. When x=1, the first condition fails and the ‘and’ is observed. So

is no need for the interpreter to check the other condition x/y>2. Even if condition

2 evaluates to be true the entire statement is going to return false. Hence python

stops executing the second condition after finding first to be false which is called

as “Short Circuiting”

iv) Works on integers and yields remainder when the first operand is divided by the

second

E.g.: 12%10 will be evaluated to 2

[04] CO1 L2

 (b) Describe Python language support for arithmetic operators. Write a Python

program to calculate and print the student total marks based on 2 exam, one sport

event and 1 activity conducted in a college with a weightage of an activity=20% ,

each exam=30% and sports=20% for 100 marks.

Arithmetic Operators :

+ : Addition, -: Subtraction, * : Multiplication, / : division ** : Exponentiation, % :

Modulus

 Division operator in Python 2.x will truncate result to int.

 Division operator in Python 3.x will not truncate the results i.e. output will

be in type float

 Program :

m1,m2=int(input(“Enter the marks scored by a student in 2 exams out of

100”)).split()

s1=int(input(“Enter the marks scored by a student in sports out of 100”))

a1= int(input(“Enter the marks scored by a student in activity out of 100”))

a1=(a1/100)*20

[06] CO1 L3

s1=(s1/100)*20

m1=(m1/100)*30

m2=(m2/100)*30

total=s1+a1+m1+m2

print(“total marks scored by student is %d out of 100” %(total))

2 (a) List and give syntax of all Python supported conditional statements along with its

usage with an example program to check whether a given number is positive or

negative or zero.

1 Mark per each syntax and 1 mark for the program

 If

 If else

 Chained conditionals : If elifelse

 Nested Conditionals : nested if else

If statement

Syntax :

if (condition):

 statements

Program :

if(a==0):

 print(“zero")

if(a>0):

 print(“+VE")

if(a<0):

 print(“-VE")

If else statement

Syntax :

if (condition):

 statements

else :

 statements

Program :

if(a==0):

 print(“zero")

else :

 if(a>0):

 print(“+VE ")

 else:

 print(“-VE ")

If elif else statement : Chained Conditionals

Syntax :

if (condition):

 statements

elif(condition) :

 statements

else:

 statements

Program :

if(a==0):

 print(“zero")

[06] CO1 L2

elif(a<0):

 print("Negative")

else:

 print("Positive")

Nested Conditionals

if (condition):

 statements

else :

 if (condition):

 statements

 else :

 statements

Program :

if (a==0):

 print(“zero”)

else :

 if (a<0):

 print(“Negative”)

 else :

 print(“Positive”)

 (b) Explain the rules of precedence used by Python to evaluate an expression.

 When more than one operator is present in an expression then they are

evaluated in the order of precedence - PEMDAS.

1.Parentheses : 2*(3-1) is 4

2.Exponentiation : 2**1+1 is 3 and not 4

3.Multiplication & Division have same precedence

4.Addition and subtraction have same precedence

 Operators with same precedence are evaluated from left to right.

[04] CO1 L2

3 (a) How Python handles the exceptions? Explain with an example program.

 Exception is an error that happens during execution of a program.

 Try Block : Include the sequence of instructions which may have a problem

while execution

 Except Block: Sequence of statements that want to be executed when an

error is encountered.

 Finally Block: Executes always regardless of result of try and except blocks

 If exception doesn’t occurs then statements in the except block is skipped.

 If exception occurs then control transfers from try block to the except

block.

Program:

try :

 inp=input(“enter farenheitvalue”)

 fahr=float(inp)

 cel=(fahr-32.0)*5.0/9.0

 print(cel)

except:

 print(“Enter correct value pls”)

[06] CO1 L2

 (b) Predict the output and justify your answer: i) -11%9 ii)7.7//7 iii)(200-70)*10/5

iv)not “False”

 7

 1.0

 260.0

 False

[04] CO1 L3

 P.T.O.

P.T.O

4 (a) List and explain any four built in string manipulation functions supported in Python

with examples.

 upper() - returns the upper case value

a=‘hello’

print(a.upper()) #prints ‘HELLO’

a=‘hELllo’

print(a.lower()) #prints ‘hello’

 strip() - removes the white space (spaces, tabs or newlines) from the beginning and

end of a string and not in the middle

a=‘ hello’

print(a.strip()) # prints ‘hello’ as output

 n

another

a=‘hello’

print(a.find(‘l’)) #prints 2 as output

[05] CO2 L2

 (b) Write a user defined function “roll_dice()” which returns random numbers

between 1 to 6.

Program:

def roll_dice():

 print(random.randint())

roll_dice()

[05] CO1 L2

5 (a) A positive integer ‘m’ is a sum of squares if it can be written as k+x, where k>0 and

x>0 and both k and x are perfect squares. Write a Python function

“Sum_of_squares(m)” that takes an integer ‘m’ and returns true if ‘m’ is a sum of

squares and False otherwise. [Hint:Sum_of_squares(41) should return True,

Sum_of_squares(30) should return False, Sum_of_squares(17) should return true]

Program :

import math

def sumofsquares(m):

 r=math.floor(math.sqrt(m))

 for j in range(1,r+1):

[10] CO1 L3

 for k in range(r,0,-1):

 if j**2 + k** ==m:

 return True

 return False

6 (a) List the rules to declare a variable in Python. Demonstrate at least three different

types of variable uses with an example program.

 Can start with any letter “A to Z” or “a to z” or an Underscore followed by Zero or

letters, Underscore and digits

 Cannot start with digits

 Python does not allow punctuation characters such as @,&,$,% as an identifier

 Python is a case Sensitive language

 Variable uses i.e. Label, Access

Program :

A=10

B=12.0

C= “PYTHON”

D=A*B

print(“A:%d,B:%f,C:%f,D:%s” %(A,B,C,D))

[05] CO1 L1

 (b) Write a Python code to print the following pattern using loops:

 # x x

 x # x

 x x #

Program :

for i in range(3):

 for j in range(3):

 if i==j:

 print(“#”)

 print(x)

[05] CO2 L2

7 Write a Python program which repeatedly reads numbers until the user enters

“done”. Once done is entered print out the total, count and average of the numbers.

If the user enters anything other than the numbers, detect their mistake using try

and except and print an error message and skip to the next number.

Program :

count = 0

total = 0

avg = 0

keepgoing = True

while keepgoing:

 prompt1 = 'Enter a number \n'

 line = input (prompt1)

 try:

 line = float(line)

[10] CO2 L2

 count = count + 1

 total = total + line

 avg = total / count

 except:

 if line == 'Done' or line == 'done':

 break

 else:

 print 'Invalid Input'

 continue

print count, total, avg

