

Scheme of Evaluation

Internal Assessment Test 1 – March 2019

Sub: Software Testing Code: 15IS63

Date: 06/03/2019 Duration: 90mins
Max

Marks: 50
Sem: VI Branch: ISE

Note: Answer Any Five Questions

Question

Description Marks Distribution Max

Marks

1

a) Define the following:

i) Error

ii) Fault

iii) failure

iv) incident

v) Reliability

vi) Operational profile

1 M

1M

1M

1M

1M
1M

6 M

10 M

b)
Explain the Test generation strategies with a diagram

 Model based testing

 Specification based testing

 Code based testing

 Diagram

1 M

1 M

1 M

1M

4 M

2

With a neat diagram, explain the SATM system.

 SATM GUI

 Diagram for 15 transaction screens

 Explanation of working of ATM with 3 types of

transactions (withdrawal, deposit, balance enquiry)

1 M

2 M

7 M

10 M 10 M

3

a) Briefly explain testing using Venn Diagram

 Venn Diagram

 Identifying each region and explanation of all

regions

1M

4M

5 M

10 M
b) Differentiate between functional testing and structural

testing?

 Functional testing

 Structural Testing

2.5M

2.5M

5 M

4

Briefly explain weak normal and strong robust

equivalence class testing and apply them to derive test

cases for triangle problem

 Weak normal ECT with diagram

 Strong Robust ECT with diagram

 Test cases for triangle problem

3M

3M

4M

10 M

10 M

5

a)

Write a short note on random testing

 Explanation of random testing

 Formula for random testing

 Example

3 M
1 M

2 M

6 M

10 M

b)

Discuss what typical test case information should
include.

 Listing of all fields

 4 M

4 M

6

a)
Justify the usage of boundary value analysis with

function of two variables and highlight the limitations
of BVA.

 General BVA

 Worst case BVA

 Robust BVA

 Robust worst case BVA

 Limitations

2M

2M

2M

2M

2M

10 M 10 M

7

a) Define oracle and explain its construction with example

 Oracle Definition

 Hvideo application example

 Diagram

1M

3M

1M

5 M

10 M b) Explain with diagram the currency converter.

 GUI

 Explanation of application

 Testing the GUI

1M

3M

1M

5 M

IAT-1 Solution

Software Testing (15IS63)

March 2018-19

1 a) Define the following

i. Error: People make errors. A good synonym is “mistake”. When people make

mistakes while coding, we call these mistakes “bugs”. Errors tend to propagate; a

requirements error may be magnified during design, and amplified still more during

coding

ii. Fault: A fault is the result of an error. It is more precise to say that a fault is the

representation of an error, where representation is the mode of expression, such as

narrative text, dataflow diagrams, hierarchy charts, source code, and so on. “Defect”

is a good synonym for fault; so is “bug”. Faults can be elusive.

iii. Failure: A failure occurs when a fault executes. Two subtleties arise here: one is that

failures only occur in an executable representation, which is usually taken to be

source code, or more precisely, loaded object code. The second subtlety is that this

definition relates failures only to faults of commission

iv. Incident: When a failure occurs, it may or may not be readily apparent to the user (or

customer or tester). An incident is the symptom(s) associated with a failure that alerts

the user to the occurrence of failure.

v. Software reliability: is the probability of failure free operation of software over a given

time interval and under given conditions.

vi. An operational profile is a numerical description of how a program is used

b) Explain the Test generation strategies with a diagram

Any form of test generation uses a source document. In the most informal of test methods, the

source document resides in the mind of the tester who generates tests based on a knowledge of

the requirements.

In several commercial environments, the process is a bit more formal. The tests are generated

using a mix of formal and informal methods either directly from the requirements document

serving as the source. In more advanced test processes, requirements serve as a source for the

development of formal models.

 Model based: require that a subset of the requirements be modeled using a formal

notation (usually graphical). Models: Finite State Machines, Timed automata, Petri net,

etc.

 Specification based: require that a subset of the requirements be modeled using a formal

mathematical notation.

 Code based: generate tests directly from the code.

3 a) Briefly explain testing using Venn diagram

Testing is fundamentally concerned with behavior; and behavior is orthogonal to the structural

view common to software (and system) developers. A quick differentiation is that the

structural view focuses on “what it is” and the behavioral view considers “what it does

 2, 5: Specified behavior that are not tested

 1, 4: Specified behavior that are tested

 3, 7: Test cases corresponding to unspecified behavior

 2, 6:Programmed behavior that are not tested

 1, 3:Programmed behavior that are tested

 4, 7:Test cases corresponding to un-programmed behaviors

If there are specified behaviors for which there are no test cases, the testing is incomplete. If

there are test cases that correspond to unspecified behaviors Either such test cases are

unwarranted, or

Specification is deficient: It also implies that testers should participate in specification and

design reviews

b) Differentiate between functional testing and structural testing?

Functional testing is based on the view that any program can be considered to be a function

that maps values from its input domain to values in its output range. This leads to the term

black box testing in which the content (implementation) of a black box is not known, and

the function of the black box is understood completely in terms of its inputs and outputs.

INPUT OUTPUT

With the functional approach to test case identification, the only information that is used is

the specification of the software. There are two distinct advantages to functional test cases:

they are independent of how the software is implemented, so if the implementation changes,

the test cases are still useful, and test case development can occur in parallel with the

implementation, thereby reducing overall project development interval. On the negative side

functional test cases frequently suffer from two problems:

1. Redundancies

2. Gaps in tested software.

Structural Testing

 Structural testing is the other fundamental approach to test case identification. To contrast it

with Functional Testing, it is sometimes called White Box (or even Clear Box) Testing. The

clear box metaphor is probably more appropriate, because the essential difference is that the

implementation (of the Black Box) is known and used to identify test cases.

4) Briefly explain weak normal and strong robust equivalence class testing and apply them to

derive test cases for triangle problem

Consider a function F, of two variables x1 and x2

 x1 and x2 have the following boundaries and intervals within boundaries:

a ≤ x1 ≤ d, with intervals [a, b) [b, c), [c, d)
e ≤ x2 ≤ g, with intervals [e, f) [f, g)

 [= closed interval, (= open interval

In weak normal equivalence class:

 One variable from each equivalence class

 Values identified in systematic way

Robust Equivalence Class Testing

 Robust - consideration of invalid values.

 Two problems with robust ECT

 Specification (expected output for invalid TC?)

 Strongly typed languages (eliminate need), Traditional equivalence class testing

(FORTRAN, COBAL) – errors common

Weak Robust Equivalence Class Testing

 Valid inputs – weak normal ECT

 Invalid inputs – each TC has one invalid value, single fault should cause failure.

Strong Robust Equivalence Class Testing

 Combination of both robust and strong

Triangle Problem

Four possible outputs – NotA-Triangle, Scalene, Isosceles and

Equilateral.

R1 = {<a,b,c> : the triangle with sides a.b and c is equilateral}

R2 = {<a,b,c> : the triangle with sides a,b and c is isosceles}

R3 = {<a,b,c> : the triangle with sides a,b and c is isosceles}

R4 = {<a,b,c> : sides a,b and c do not form a triangle}

Weak Normal Test cases

Strong Robust Test cases

 5 a) Write a short note on random testing

The basic idea is that, rather than always choose the min, min+, nom, max–, and max values of a

bounded variable, use a random number generator to pick test case values. This avoids any form

of bias in testing Tables 5.6 show the results of randomly generated test cases. They are derived

from a Visual Basic application that picks values for a bounded variable:

a ≤ x ≤ b as follows:
x = Int((b – a + 1) * Rnd + a)

where the function Int returns the integer part of a floating point number, and the function Rnd

generates random numbers in the interval [0, 1]. The program keeps generating random test cases

until at least one of each output occurs

b) Discuss what typical test case information should include

A complete test case will contain a test case identifier, a brief statement of purpose (e.g., a

business rule), a description of preconditions, the actual test case inputs, the expected outputs, a

description of expected post conditions, and an execution history. The execution history is

primarily for test management use—it may contain the date when the test was run, the person

who ran it, the version on which it was run, and the pass/fail result

6) Justify the usage of boundary value analysis with function of two variables and highlight

the limitations of BVA

Consider function F, of two variables x1 and x2. When the function F is implemented as a

program, the input variables x1 and x2 will have some (possibly unstated) boundaries:

a ≤ x1 ≤ b

c ≤ x2 ≤ d

Normal Boundary Value Testing: The basic idea of boundary value analysis is to use input

variable values at their minimum, just above the minimum, a nominal value, just below their

maximum, and at their maximum: min, min+, nom, max–, and max.

The normal boundary value analysis test cases for our function F of two variables are

{<x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>, <x1nom, x2max–>, <x1nom,

x2max>, <x1min, x2nom>, <x1min+, x2nom>, <x1max–, x2nom>, <x1max, x2nom>}

Thus, for a function of n variables, boundary value analysis yields 4n + 1 unique test cases.

Robust Boundary Value Testing

Robust boundary value testing is a simple extension of normal boundary value testing: in

addition

to the five boundary value analysis values of a variable : the extrema are exceeded with a value

slightly greater than the maximum (max+) and a value slightly less than the minimum (min–)

Worst-Case Boundary Value Testing: Rejects single-fault assumption and more than one

variable has an extreme value. For each variable, we start with the five-element set that contains

the min, min+, nom, max–, and max values. We then take the Cartesian product of these sets to

generate test cases. The result of the two-variable version of this is shown in Figure

Worst-case boundary value testing is clearly more thorough in the sense that boundary value

analysis test cases are a proper subset of worst-case test cases. It also represents much more

effort:

worst-case testing for a function of n variables generates 5n test cases, as opposed to 4n + 1 test

cases for boundary value analysis

Figure below shows the robust worst-case test cases for our two-variable function

Limitations of Boundary Value Analysis

Boundary value analysis works well when the program to be tested is a function of several

independent variables that represent bounded physical quantities Boundary value analysis test

cases are derived from the extrema of bounded, independent variables that refer to physical

quantities, with no consideration of the nature of the function, nor of the semantic meaning of the

variables.

7 a) Define oracle and explain its construction with example

The entity that performs the task of checking the correctness of the observed behavior is known

as an oracle.

Oracle construction: Example

b) Explain with diagram the currency converter.

The currency conversion program is another event-driven program that emphasizes code

associated with a GUI

The application converts US dollars to any of four currencies: Brazilian reals, Canadian dollars,

European Union euros, and Japanese yen. Currency selection is governed by the radio buttons

(option buttons), which are mutually exclusive. When a country is selected, the system responds

by completing the label; for example, “Equivalent in …” becomes “Equivalent in Canadian

dollars” if the Canada button is clicked. Also, a small Canadian flag appears next to the output

position for the equivalent currency amount. Either before or after currency selection, the user

inputs an amount in US dollars. Once both tasks are accomplished, the user can click on the

Compute button, the Clear button, or the Quit button. Clicking on the Compute button results in

the conversion of the US dollar amount to the equivalent amount in the selected currency.

Clicking on the Clear button resets the currency selection, the US dollar amount, and the

equivalent currency amount and the associated label. Clicking on the Quit button ends the

application

	Structural Testing

