

USN

Solution for Internal Assessment Test 1 – March 2019

Sub: Design & Analysis of Algorithms Sub Code: 17CS43 Branch: CSE

Date: 06/03/2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4/A,B ,C& D OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Write an algorithm to find maximum element in an array of n elements. Give the

mathematical analysis of this non-recursive algorithm.

MaxElement (A[0..n-1])

Maxval = A[0]

For i = 1 to n-1 do

 if A[i] > Maxval

 Maxval = A[i]

return Maxval

The innermost comparison is the basic operation. If C(n) denotes the number of

times this basic operation is executed, then C(n) = sigma (i from 1 to n-1) 1 = n-1

belongs to theta(n)

[10] CO1,

CO2,

CO3

L2

2 Explain divide and conquer technique. Write a recursive algorithm for finding the

maximum and minimum element from the list.

1. The problem’s instance is divided into several smaller instances of the same

problem

2. The smaller instances are solved (Typically recursively)

3. If necessary, the smaller instance solutions are combined to get a solution of the

overall problem

Recursively, T(n) = aT(n/b) + f(n), where T(n) is the running time, n can be divided

into b instances of size n/b, with a of them needing to be solved and f(n) is the time

taken to divide the problem and combine the solutions.

MaxMin(i, j, max, min)

// a[1: n] is a global array; i and j are integers 1<= i <= j <= n. max and min get set

to largest and smallest values in a[i : j] respectively

Begin

 If (i = j) then max = min = a[i]

 Else if (i = j – 1) then

 Begin

 If (a[i] < a[j]) then

 max = a[j]; min = a[i];

 Else

 max = a[i]; min = a[j];

 End

 Else

 Begin

 mid = floor((i + j)/2)

[10] CO2,

CO3

L1

 MaxMin(i, mid, max, min);

 Maxmin(mid+1, j, max1, min1)

 If (max < max1) then max = max1;

 If (min > min1) then min = min1;

 End

End

Initially, the above is called with MaxMin(1, n, x, y)

3 Define three asymptotic notations and from the following equalities prove if it is

incorrect or correct using the definitions of asymptotic notations

i) 6n2-8n= ϴ(n2) ii) 12n2+8=O(n) iii) 3n2logn= ϴ(n2)

A function t(n) is said to be in O(g(n)) if there exist some positive number c and some

non-negative integer n0 such that t(n) <= cg(n) for all n >= n0

A function t(n) is said to be in Omega(g(n)) if there exist some positive number c and

some non-negative integer n0 such that t(n) >= cg(n) for all n >= n0

A function t(n) is said to be in Theta(g(n)) if there exist some positive numbers c1 and

c2 and some non-negative integer n0 such that c2g(n) <= t(n) <= c1g(n) for all n >= n0

i) is true, ii) and iii) are false

[10] CO2 L3

4 Design a recursive algorithm for solving tower of Hanoi problem and give the

general plan of analyzing that algorithm.

Tower (n, s, d)

// move n disks from peg s to peg d

// disks are numbered from 1 to n, 1 occupying the highest position, n the lowest

If (n = 1) move disk 1 from s to d

Else

 Tower (n-1, s, i)

 Move disk n from s to d

 Tower (n-1, i, d)

Initially the above may be called with s = 1, i = 2, d = 3

Solve the recurrence relation T(n) = 2T(n-1) + 1 which leads to T(n) = 2n - 1

[10] CO2,

CO3

L2

5 Design an algorithm for binary search, give an example. Show that the worst case

efficiency of binary search is ϴ(log n).

[10] CO3,

CO4

L3

BinarySearch (A[0..n-1], K)

while (l <= r) do

 m = floor((l+r)/2)

 if (K = A[m]) return m

 else if (K < A[m]) r = m-1

 else l = m+1

return -1

Recurrence relation is Cworst(n) = Cworst(floor(n/2)) + 1, n > 1, Cworst(1) = 1

Solving the above gives Cworst(n) = floor(log2n) + 1 which implies that the efficiency of Binary Search is

Theta(log n)

 6 Write an algorithm for merge sort. Analyze its efficiency.

Mergesort (A[0..n-1])

if (n > 1)

 copy A[0..floor(n/2) – 1] to B[0..floor(n/2) – 1]

 copy A[floor(n/2)..n – 1] to C[0..ceiling(n/2) – 1]

 Mergesort(B[0..floor(n/2) – 1])

 Mergesort(C[0..floor(n/2) – 1])

 Merge(B, C, A)

C(n) = 2C(n/2) + Cmerge(n), n > 1, C(1) = 0

In the worst case, Cmerge(n) = n – 1 and so Cworst(n) = 2Cworst(n/2) + n – 1, n > 1,

Cworst(1) = 0. Solving this gives Cworst(n) = nlogn – n + 1

[10] CO2,

CO3,

CO4

L4

7(a) Define an algorithm. Discuss the criteria of an algorithm with an example.

An algortihm is a sequence of unambiguous instructions to solve a problem.

Criteria:

 The unambiguity requirement is essential

 The range of inputs for which the algorithm works have to be specified

 The algorithm terminates after a finite number of steps

 The instructions may be effective so that they may be carried out

 Zero or more inputs have to be given

 One or more outputs have to be produced

[5] CO1 L1

 (b) Prove that:

 If t1(n) Є O(g1(n)) and t2(n) Є O(g2(n)) then t1(n)+ t2(n) Є O(max{g1(n), g2(n)})

Given in Levitin book

[5] CO1 L3

8 Explain about Master’s theorem. Solve the following using substitutions and

Master’s theorem
i) T(n)=2T(n/2)+n ,T(1)=2

ii) T(n)= 9T(n/3)+4n6 , T(1)= 1

If f(n) belongs to O(nd) with d >= 0 in the recurrence equation

T(n) = aT(n/b) + f(n), then

 T(n) belongs to O(nd), if a < bd

 T(n) belongs to O(ndlogn) if a = bd

 T(n) belongs to O(n log
b

a) if a > bd

[10] CO1 L3

.

T(n) = O, Omega or Theta (nlogn)

T(n) = O, Omega or Theta (n6)

