1. Write the different OpenGL primitives, explain each primitive with an example.

- **2. With a neat diagram, explain the design and operation of cathode ray tube.**
	- a. Diagram. : 4Marks
	- b. Explanation : 6Marks

The most predominant type of display has been the Cathode Ray Tube (CRT) Various parts of a CRT:

- Electron Gun emits electron beam which strikes the phosphor coating to emit light.
- Deflection Plates controls the direction of beam. The output of the computer is converted by digital-to-analog converters o voltages across x & y deflection plates.
- Refresh Rate In order to view a flicker free image, the image on the screen has to be retraced by the beam at a high rate (modern systems operate at 85Hz).

2 types of refresh:

- No interlaced display: Pixels are displayed row by row at the refresh rate.
- Interlaced display: Odd rows and even rows are refreshed alternately.
- **3. With neat diagrams, discuss about the architectures of video controller and raster scan display processor.**

Raster-Scan Displays

The electron beam is swept across the screen one row at a time from top to bottom.

 As it moves across each row, the beam intensity is turned on and off to create a pattern of illuminated spots.

- This scanning process is called refreshing. Each complete scanning of a screen is normally called a frame.
- The refreshing rate, called the frame rate, is normally 60 to 80 frames per second, or described as 60 Hz to 80 Hz.
- Picture definition is stored in a memory area called the frame buffer.
- This frame buffer stores the intensity values for all the screen points. Each screen point is called a pixel (picture element).
- Property of raster scan is Aspect ratio, which defined as number of pixel columns divided by number of scan lines that can be displayed by the system.

Random-Scan Displays

When operated as a random-scan display unit, a CRT has the electron beam directed only to those parts of the screen where a picture is to be displayed.

- Pictures are generated as line drawings, with the electron beam tracing out the component lines one after the other.
- For this reason, random-scan monitors are also referred to as vector displays (or stroke writing displays or calligraphic displays).
- The component lines of a picture can be drawn and refreshed by a random-scan system in any specified order
- A pen plotter operates in a similar way and is an example of a random-scan, hard-copy device.
- Refresh rate on a random-scan system depends on the number of lines to be displayed on that system.
- Picture definition is now stored as a set of line-drawing commands in an area of memory referred to as the display list, refresh display file, vector file, or display program
- To display a specified picture, the system cycles through the set of commands in the display file, drawing each component line in turn.
- After all line-drawing commands have been processed, the system cycles back to the first line command in the list.
- Random-scan displays are designed to draw all the component lines of a picture 30 to 6 times each second, with up to 100,000 "short" lines in the display list.
- When a small set of lines is to be displayed, each refresh cycle is delayed to avoid very high refresh rates, which could burn out the phosphor.
- **4. Write the algorithm for Bresenham's line drawing algorithm for m<1.0, and digitize the line segment with end points (20, 10) to (30, 18).**

Bresenham's Algorithm:

- It is an efficient raster scan generating algorithm that uses incremental integral calculations
- To illustrate Bresenham's approach, we first consider the scan-conversion process for lines with positive slope less than 1.0.
- Pixel positions along a line path are then determined by sampling at unit x intervals. Starting from the left endpoint (x0, y0) of a given line, we step to each successive column (x position) and plot the pixel whose scan-line y value is closest to the line path.
- Consider the equation of a straight line $y=mx+c$ where $m=dy/dx$

Bresenham's Line-Drawing Algorithm for |m| < 1.0

- Input the two line endpoints and store the left endpoint in $(x0, y0)$.
- Set the color for frame-buffer position $(x0, y0)$; i.e., plot the first point.
- Calculate the constants Δx , Δy , $2\Delta y$, and $2\Delta y 2\Delta x$, and obtain the starting value for the decision parameter as,

o $p0 = 2\Delta y - \Delta x$

• At each xk along the line, starting at $k = 0$, perform the following test:

 \circ If pk < 0, the next point to plot is

- $(xk + 1, yk)$ and $pk+1 = pk + 2\Delta y$
- o Otherwise, the next point to plot is
	- $(xk + 1, yk + 1)$ and $pk+1 = pk + 2Δy 2Δx$
- Repeat step $4 \Delta x 1$ more times.

5. Write an OpenGL recursive program for generating 3D Sierpinski gasket

```
#include<stdlib.h>
#include<stdio.h>
#include<GL/glut.h>
typedef float point[3];
point v[]={{0.0,0.0,1.0},{0.0,0.942809,-0.33333},{-0.816497,-0.471405,-
0.33333},{0.816497,-0.471405,-0.333333}};
static GLfloat theta[]={0.0,0.0,0.0};
int n;
void triangle(point a,point b,point c)
{
       glBegin(GL_POLYGON);
       glNormal3fv(a);
        glVertex3fv(a);
       glVertex3fv(b);
       glVertex3fv(c);
       glEnd();
}
void divide_triangle(point a,point b,point c,int m)
{
       point v1,v2,v3;
       int j;
       if(m>0){
               for(j=0;j<3;j++)v1[j] = (a[j]+b[j])/2;for(j=0; j<3; j++)v2[i] = (a[i] + c[i])/2;for(j=0;j<3;j++)v3[j] = (b[j]+c[j])/2;divide_triangle(a,v1,v2,m-1);
               divide_triangle(c,v2,v3,m-1);
               divide_triangle(b,v3,v1,m-1);
       }
       else(triangle(a,b,c));
}
       void tetrahedron(int m)
       {
               glColor3f(1.01,0.0,0.0);
               divide_triangle(v[0],v[1],v[2],m);
               glColor3f(0.1,1.0,0.0);
    divide_triangle(v[3],v[2],v[1],m);
               glColor3f(0.0,0.0,0.11);
    divide_triangle(v[0],v[3],v[1],m);
               glColor3f(0.0,0.0,0.01);
               divide_triangle(v[0],v[2],v[3],m);
       }
       void display(void)
       {
               glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
               glLoadIdentity();
```

```
tetrahedron(n);
       glFlush();
}
void myReshape(int w,int h)
{
       glViewport(0,0,w,h);
       glMatrixMode(GL_PROJECTION);
       glLoadIdentity();
       if(w \leq h) glOrtho(-2.0,2.0,-2.0,2.0,-10.0,10.0);
       else
       glOrtho(-2.0,2.0,-2.0,2.0,-10.0,10.0);
       glMatrixMode(GL_MODELVIEW);
       glutPostRedisplay();
}
void main(int argc,char **argv)
{
       printf("no of divisions ?");
       scanf("%d",&n);
       glutInit(&argc,argv);
       glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
       glutInitWindowSize(500,500);
       glutCreateWindow("3d Gasket");
       glutReshapeFunc(myReshape);
       glutDisplayFunc(display);
       glEnable(GL_DEPTH_TEST);
       glClearColor(1.0,1.0,1.0,1.0);
       glutMainLoop();
}
```
6. What are the polygon classifications? How to identify a convex polygon? Illustrate how to split a concave polygon

Polygons are classified into two types

- Convex Polygon and
- 2. Concave Polygon

Convex Polygon:

• The polygon is convex if all interior angles of a polygon are less than or equal to 180°, where an interior angle of a polygon is an angle inside the polygon boundary that is formed by two adjacent edges.

- An equivalent definition of a convex polygon is that its interior lies completely on one side of the infinite extension line of any one of its edges.
- Also, if we select any two points in the interior of a convex polygon, the line segment joining the two points is also in the interior.

Concave Polygon:

A polygon that is not convex is called a concave polygon.

Identifying interior and exterior region of polygon

- We may want to specify a complex fill region with intersecting edges.
- For such shapes, it is not always clear which regions of the xy plane we should call "interior" and which regions.
- We should designate as "exterior" to the object boundaries.
- Two commonly used algorithms
	- o Odd-Even rule and
	- o The nonzero winding-number rule.

Inside-Outside Tests

- Also called the odd-party rule or the even-odd rule.
- Draw a line from any position P to a distant point outside the coordinate extents of the closed polyline.
- Then we count the number of line-segment crossings along this line.
- If the number of segments crossed by this line is odd, then P is considered to be an interior point Otherwise, P is an exterior point
- We can use this procedure, for example, to fill the interior region between two concentric circles or two concentric polygons with a specified color.

Nonzero Winding-Number rule

- This counts the number of times that the boundary of an object "winds" around a particular point in the counterclockwise direction termed as winding number,
- \bullet Initialize the winding number to 0 and again imagining a line drawn from any position P to a distant point beyond the coordinate extents of the object.
- The line we choose must not pass through any endpoint coordinates.
- As we move along the line from position P to the distant point, we count the number of object line segments that cross the reference line in each direction
- We add 1 to the winding number every time we intersect a segment that crosses the line in the direction from right to left, and we subtract 1 very time we intersect a segment that crosses from left to right
- If the winding number is nonzero, P is considered to be an interior point. Otherwise, P is taken to be an exterior point
- The nonzero winding-number rule tends to classify as interior some areas that the oddeven rule deems to be exterior.
- Variations of the nonzero winding-number rule can be used to define interior regions in other ways define a point to be interior if its winding number is positive or if it is negative; or we could use any other rule to generate a variety of fill shapes

Rotational method

Proceeding counterclockwise around the polygon edges, we shift the position of the polygon so that each vertex Vk in turn is at the coordinate origin.

- \bullet We rotate the polygon about the origin in a clockwise direction so that the next vertex Vk+1 is on the x axis.
- If the following vertex, $Vk+2$, is below the x axis, the polygon is concave.
- We then split the polygon along the x axis to form two new polygons, and we repeat the concave test for each of the two new polygons
- **7. Write and explain midpoint circle algorithm. Midpoint Circle Concept**
- Midpoint circle algorithm generates all points on a circle centered at the origin by incrementing all the way around circle.
- The strategy is to select which of 2 pixels is closer to the circle by evaluating a function at the midpoint between the 2 pixels
- To apply the midpoint method, we define a circle function as

$$
f_{\rm circ}(x, y) = x^2 + y^2 - r^2
$$

 \bullet To summarize, the relative position of any point (x, y) can be determined by checking the sign of the circle function as follows:

$$
f_{\text{circ}}(x, y) \begin{cases} < 0, \quad \text{if } (x, y) \text{ is inside the circle boundary} \\ = 0, \quad \text{if } (x, y) \text{ is on the circle boundary} \\ > 0, \quad \text{if } (x, y) \text{ is outside the circle boundary} \end{cases}
$$

Midpoint Circle Algorithm

• Input radius r and circle center (xc, yc), then set the coordinates for the first point on the circumference of a circle centered on the origin as

 $(x0, y0) = (0, r)$

• Calculate the initial value of the decision parameter as

 $p0 = 1-r$

- At each xk position, starting at $k = 0$, perform the following test:
- If pk <0, the next point along the circle centered on $(0, 0)$ is $(xk+1, yk)$ and $pk+1 = pk + 2xk+1 + 1$
- Otherwise, the next point along the circle is $(xk + 1, yk 1)$ and $pk+1 = pk + 2xk+1 + 1 - 2yk+1$ where $2xk+1 = 2xk + 2$ and $2yk+1 = 2yk - 2$.
- Determine symmetry points in the other seven octants.
- Move each calculated pixel position (x, y) onto the circular path centered at (xc, yc) and plot the coordinate values as follows: $x = x + xc$, $y = y + yc$
- Repeat steps 3 through 5 until $x \ge y$.