

 USN

Internal Assessment Test II – April 2019

Sub: Python Application Programming Sub Code: 15CS664 Branch: ISE/ECE/TCE

Date: 20/04/2019 Duration: 90 mins Max Marks: 50 Sem/Sec : 6th Sem Open Elective OBE

Answer any FIVE FULL Questions

MARKS

CO RBT

1 (a) Explain string slices with the help of code snippets

Scheme:

Definition – 1M

Different examples – 3M

Solution:

➢ A segment of a string is called a slice.
➢ For Example:

>>> s = 'Leela Palace'

>>> print(s[0:4])

Leel

>>> print(s[0:5])

Leela

>>> print(s[0:6])

Leela

>>> print(s[0:7])

Leela P

>>> print(s[2:9])

ela Pal

>>> print(s[-1:-7]) → This won’t work.

→ It results in an empty string

>>> print(s[-1])

e

>>> print(s[-4])

l

The operator returns the part of the string from the “n-eth” character to

the “m-eth” character, including the first but excluding the last.
➢ If you omit the first index (before the colon), the slice starts at the

beginning of the string. If you omit the second index, the slice goes to the

end of the string.
>>> veg = 'babycorn'

>>> print(veg[:4])

baby

[04] CO2 L1

>>> print(veg[4:])

corn

➢ If the first index is greater than or equal to the second the result is an empty

string, represented by two quotation marks.
>>> fruit = 'apple'

>>> print(fruit[2:2])

 → Empty String

>>> print(fruit[-1:0])

 → Empty String

>>> print(fruit[-3:-1])

pl

>>> print(fruit[-5:-1])

appl

>>> print(fruit[-5:0])

 → Empty String

>>>

>>> print(fruit[:]) → Exercise 2

Apple

Note: An empty string contains no characters and has length 0, but other

than that, it

is the same as any other string.

 (b) Briefly explain any 6 built in functions in strings with examples.

Scheme:

Any 6 built in function with syntax and example – 1*6M

Solution:

1. upper()
• The upper() method returns the uppercased string from the

given string. It converts all lowercase characters to

uppercase.

• If no lowercase characters exist, it returns the original string.

• For example:
>>> str = 'python application programming'

>>> print(str.upper())

PYTHON APPLICATION PROGRAMMING

2. find()

• Syntax:

str.find(sub[, start[, end]])

[06] CO2 L1

sub - It's the substring to be searched in the str string.

start (optional) - starting index, by default its 0.

end (optional) – ending index, by default its equal to the length

of the string

Note: [] means optional.

• The find() method returns an integer value:

✓ If substring exists inside the string, it returns the

lowest index where substring is found.

✓ If substring doesn't exist inside the string, it returns -

1.

• For example:

I. >>> quote = 'it is not too old and it is not too

late'

>>> print(quote.find('old'))

14

>>> quote = 'it is not too Old and it is not too

late'

>>> print(quote.find('old'))

-1

II. >>> quote = 'it is not too old and it is not too

late'

>>> print(quote.find('o',10))

11

>>> print(quote.find('o',15))

29

III. >>> quote = 'it is not too old and it is not too

late'

>>> print(quote.find('too',9,30))

10

>>> print(quote.find('too',10,30))

10

>>> print(quote.find('too',20,30))

-1

>>> print(quote.find('too',30,20))

-1

>>> print(quote.find('too',20,40))

32

IV. >>> quote = 'it is not too old and it is not too

late'

>>> print(quote.find('and',-40,-10))

18

>>> print(quote.find('and',-10,-40))

-1

3. strip()

• Syntax:

str.strip([chars])

chars (optional) - a string specifying the set of

characters to be removed. If the chars argument is not

provided, all leading and trailing whitespaces are removed

from the string.

• The strip() returns a copy of the string with both leading and
trailing characters stripped.
✓ When the combination of characters in the chars

argument mismatches the character of the string in
the left, it stops removing the leading characters.

✓ When the combination of characters in the chars
argument mismatches the character of the string in
the right, it stops removing the trailing characters.

• For example:

I. >>> string = ' welcome to python programming

'

>>> print(string.strip())

welcome to python programming

II. >>> string = 'welcome to python programming'

>>> print(string.strip())

welcome to python programming

III. >>> string = '***welcome ** to * python

programming***'

>>> print(string.strip('*'))

welcome ** to * python programming

IV. >>> string = 'welcome to python programming'

>>> print(string.strip('welcome'))

 to python programming

V. >>> string = 'welcome to python programming'

>>> print(string.strip('welcome to '))

python programming

VI. >>> string = 'welcome to python programming'

>>> print(string.strip('gam'))

welcome to python programmin

4. startswith()

• Syntax:

 str.startswith(prefix[, start[, end]])

• The startswith() method takes maximum of three

parameters:

✓ prefix - String or tuple of strings to be checked.

✓ start (optional) - Beginning position where prefix is to

be checked within the string.

✓ end (optional) - Ending position where prefix is to be

checked within the string.

• The startswith() method returns a boolean:

✓ It returns True if the string starts with the specified

prefix.

✓ It returns False if the string doesn't start with the

specified prefix.

• For example:

I. >>> text = 'Python is easy to learn'

>>> res = text.startswith('python')

>>> print(res)

False

II. >>> text = 'Python is easy to learn'

>>> res = text.startswith('Python is easy')

>>> print(res)

True

III. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming',7)

>>> print(res)

True

IV. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming',8)

>>> print(res)

False

V. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming is',7,18)

>>> print(res)

False

VI. >>> text = 'Python programming is easy'

>>> res = text.startswith('program',7,18)

>>> print(res)

True

VII. >>> text = 'Python programming is easy'

>>> res = text.startswith('easy to',7,18)

>>> print(res)

False

5. lower()

• The lower() method returns the lowercased string from the

given string. It converts all uppercase characters to

lowercase.

• If no uppercase characters exist, it returns the original string.

• For example:

I. >>> string = 'THIS SHOULD BE IN LOWERCASE'

>>> print(string.lower())

this should be in lowercase

II. >>> string = 'th!s shouLd3 Be iN lOwer#case'

>>> print(string.lower())

th!s should3 be in lower#case

Syntax Meaning Return Value

str.count
(substrin
g[,
start[,en
d]])

count() method only

requires a single

parameter for

execution.

However, it also has

two optional

parameters:

• substring -
string whose
count is to
be found.

• start

(Optional) -

starting

index within

the string

where

search starts.

• end

(Optional) -

ending index

within the

string where

search ends.

count() method returns the number of

occurrences of the substring in the given string.

str.index
(sub[,
start[,
end]])

The index() method

takes three

parameters:

• sub -

substring to

be searched

in the string

str.

• start and

end(optiona

• If substring exists inside the string, it

returns the lowest index in the string

where substring is found.

• If substring doesn't exist inside the

string, it raises a ValueError exception.

 The index() method is similar to find()
method for strings.

https://www.programiz.com/python-programming/methods/string/find
https://www.programiz.com/python-programming/methods/string/find

l) - substring

is searched

within

str[start:en

d]

 The only difference is that find() method
returns -1 if the substring is not found, whereas
index() throws an exception.

str.isaln
um()

- The isalnum() returns:

• True if all characters in the string are

alphanumeric

• False if at least one character is not

alphanumeric

str.isalp
ha()

- The isalpha() returns:

• True if all characters in the string are

alphabets (can be both lowercase and

uppercase).

• False if at least one character is not

alphabet.

str.isdec
imal()

- The isdecimal() returns:

• True if all characters in the string are

decimal characters.

• False if at least one character is not

decimal character.

str.isdig
it()

- The isdigit() returns:

• True if all characters in the string are

digits.

• False if at least one character is not a

digit.

str.islow
er()

- The islower() method returns:

• True if all alphabets that exist in the

string are lowercase alphabets.

• False if the string contains at least one

uppercase alphabet.

str.swapc
ase()

- The swapcase() method returns the string where

all uppercase characters are converted to

lowercase, and lowercase characters are

converted to uppercase.

str.repla
ce(old,
new [,
count])

The replace()

method can take

maximum of 3

parameters:

• old - old

substring

you want to

replace

• new - new

substring

which would

replace the

old substring

• count

(optional) -

 The replace() method returns a copy of the

string where old substring is replaced with the

new substring. The original string is unchanged.

 If the old substring is not found, it returns

the copy of the original string.

the number

of times you

want to

replace the

old substring

with the new

substring

If count is not

specified, replace()

method replaces all

occurrences of

the old substring

with the new

substring.

str.join(
iterable)

The join() method
takes an iterable -
objects capable of
returning its
members one at a
time
Some of the
example of
iterables are:

• Native

datatypes -

List, Tuple,

String,

Dictionary

and Set

• File objects

and objects

you define

with an

__iter__() or

__getitem()

__ method

 The join() method returns a string

concatenated with the elements of an iterable.

 If the iterable contains any non-string

values, it raises a TypeError exception.

Examples:

1. >>> numList = ['1','2','3','4']
>>> separator = ','

>>> print(separator.join(numList))

1,2,3,4

2. >>> numTuple = ('1', '2', '3', '4')
>>> separator = ','

>>> print(separator.join(numTuple))

1,2,3,4

3. >>> str1 = 'anushka'
>>> str2 = 'virat'

>>> print(str1.join(str2))

vanushkaianushkaranushkaaanushkat

>>> print(str2.join(str1))

aviratnviratuviratsvirathviratkvirata

2 (a) What is file handle ? Explain the importance of file handle and its methods in handling files.

Scheme:

Definition of file handle – 1M

Importance of file handle – 1M

Any two file methods – 2M

Solution:

• Create a file sample.txt (File→ New File→ sample.txt)

[04] CO2 L2

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/dictionary
https://www.programiz.com/python-programming/set
https://www.programiz.com/python-programming/iterator

• We open a file sample.txt, which should be stored in the same folder

that you are in when you start Python. By default it will open in read

mode.

>>> fhand = open('sample.txt')

>>> print(fhand)

<_io.TextIOWrapper name='sample.txt' mode='r'

encoding='cp1252'>

 Note: Refer https://docs.python.org/3/library/io.html for more details

regarding io.TextIOWrapper

➢ If the open is successful, the operating system returns us a file handle. The

file

handle is not the actual data contained in the file, but instead it is a “handle”

that

we can use to read the data. You are given a handle if the requested file exists

and

you have the proper permissions to read the file.

 Fig: A file handle

➢ If the file does not exist, open will fail with a traceback and you will not get a

handle to access the contents of the file:
>>> fhand = open('test.txt')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'test.txt'

➢ If you know the file is relatively small compared to the size of your main

memory, you can read the whole file into one string using the read method

on the file handle.
>>> fhand = open('poem.txt')

>>> string = fhand.read()

>>> print(len(string))

611

>>> print(string[:30])

https://docs.python.org/3/library/io.html

When to the session of sweet s

➢ To write a file, you have to open it with mode “w” as a second parameter:
>>> fout = open('wfile.txt','w')

>>> print(fout)

<_io.TextIOWrapper name='wfile.txt' mode='w'

encoding='cp1252'>

➢ If the file already exists, opening it in write mode clears out the old data

and starts fresh. If the file doesn’t exist, a new one is created.
➢ The write method of the file handle object puts data into the file, returning

the number of characters written. The default write mode is text for writing

(and reading) strings.
>>> mess = 'Hi. Good Morning All!!!'

>>> fout.write(mess)

23

➢ After opening a file one should always close the opened file. We use

method close() for this.

➢ For example:

>>> fhand = open('sample.txt')

>>> fhand.readlines()

['Welcome to Python Application Programming.\n', 'This is Akhilaa

your course instructor.\n']

>>> fhand.close()

➢ Always make sure you explicitly close each opened file, once its job is done

and you have no reason to keep it open. Because - There is an upper limit to

the number of files a program can open. If you exceed that limit, there is no

reliable way of recovery, so the program could crash. – Each open file

consumes some main-memory for the data-structures associated with it, like

file descriptor/handle or file locks etc. So you could essentially end-up

wasting lots of memory if you have more files open that are not useful or

usable. - Open files always stand a chance of corruption and data loss.

 (b) Write a program in python to print all the lines which has email domain address (ex:

@utc.ac.za/gmail.com) in Sample-file.txt

Sample-file.txt

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za …

Scheme:

[06] CO2 L2

Input – 1M

Scanning line starting and splitting into words – 2M

Extracting mail address – 2M

Output – 1M

Solution:

fhand = open('sample-file.txt')

for line in fhand:

 line = line.rstrip()

 if not line.startswith('From '):

 continue

 words = line.split()

 eadd = words[2]

 atpos = data.find('@')

 spos = data.find(' ', atpos)

 host = data[atpos+1:spos]

 print(host)

3 (a) Bring out the difference between the following with examples

a. lists, dictionaries and tuples. c. pop() and remove()

b. append() and extend(). d. find() and startswith()

[10] CO3 L2

 Scheme:

 Syntax and example for each function : 2.5 * 4

 Solution:

 a.

List Tuple

The literal syntax of lists is shown by

square brackets []

The literal syntax of tuples is shown by

parentheses ()

Lists are mutable Tuples are immutable

Lists have order Tuples have structures

Lists are for variable length Tuples are for fixed length

Lists can be indexed, sliced and

compared

Tuples can be indexed, sliced and

compared

List are usually homogenous Tuple are usually heterogeneous

Iterating through a list is slower

compared to tuple

Iterating through a tuple is faster

Lists cannot be used as key in

dictionary

Tuples can be used as a key in

dictionary

➢ A dictionary is like a list, but more general. In a list, the index positions have to be integers; in a

dictionary, the indices can be (almost) any type.
➢ We can think of a dictionary as a mapping between a set of indices (which are called keys) and a

set of values. Each key maps to a value. The association of a key and a value is called a key-value

pair or sometimes an item.

b.

✓ The pop() method removes and returns the element at the given index (passed as an argument)

from the list.
✓ The syntax is:

list_name.pop(index)

✓ The pop() method takes a single argument (index) and removes the element present at that index

from the list.

✓ If the index passed to the pop() method is not in the range, it throws IndexError: pop index out

of range exception.

✓ The parameter passed to the pop() method is optional. If no parameter is passed, the default

index -1 is passed as an argument which returns the last element.

✓ The pop() method returns the element present at the given index.
✓ Also, the pop() method removes the element at the given index and updates the list.
✓ For example:

I. >>> prolan = ['Python', 'Java', 'C', 'C++','PHP']

>>> prolan.pop()

'PHP'

>>> print(prolan)

['Python', 'Java', 'C', 'C++']

>>> res = prolan.pop(1)

>>> print(res)

Java

>>> print(prolan)

['Python', 'C', 'C++']

>>> res = prolan.pop(6)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: pop index out of range

>>> res = prolan.pop(-2)

>>> print(prolan)

['Python', 'C++']

II. >>> mix = ['awesome', 19, 27.5, [14, 32]]

>>> mix.pop(3)

[14, 32]

https://www.programiz.com/python-programming/list

✓ The remove() method searches for the given element in the list and removes the first matching

element.
✓ The syntax is:

 list_name.remove(element)
✓ The remove() method takes a single element as an argument and removes it from the list.

✓ If the element(argument) passed to the remove() method doesn't exist, valueError exception is

thrown.

✓ The remove() method only removes the given element from the list. It doesn't return any value.

✓ For example:

I. >>> mix = ['awesome', 19, 27.5, [14, 32]]

>>> mix.remove(19)

>>> print(mix)

['awesome', 27.5, [14, 32]]

>>> mix.remove(141)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

II. >>> lang = ['Kannada', 'Telugu', 'Tamil', 'Tamil', 'Hindi', 'English']

>>> lang.remove('Tamil')

>>> print(lang)

['Kannada', 'Telugu', 'Tamil', 'Hindi', 'English']

c.

✓ The append() method adds a single item to the existing list. It doesn't return a new list; rather

it modifies the original list.
✓ The syntax is:

list_name.append(item)
✓ The append() method takes a single item and adds it to the end of the list. The item can be

numbers, strings, another list, dictionary etc.
✓ For example:

I. >>> n = [1, 2, 3, 4]

>>> n.append('end')

>>> print(n)

[1, 2, 3, 4, 'end']

>>> n = [1, 2, 3, 4]

II. >>> n.append([5, 6])

>>> print(n)

[1, 2, 3, 4, [5, 6]]

✓ The extend() extends the list by adding all items of a list (passed as an argument) to the end.
✓ The extend() method takes a single argument (a list) and adds it to the end.
✓ The syntax is:

https://www.programiz.com/python-programming/list

list1_name.extend(list2_name)
✓ For example:

>>> branch = ['ise', 'cse', 'tce','ece']

>>> branch1 = ['mech', 'civil']

>>> branch.extend(branch1)

>>> print(branch)

['ise', 'cse', 'tce', 'ece', 'mech', 'civil']

d.

• Syntax:

str.find(sub[, start[, end]])

sub - It's the substring to be searched in the str string.

start (optional) - starting index, by default its 0.

end (optional) – ending index, by default its equal to the length of the string

Note: [] means optional.

• The find() method returns an integer value:

✓ If substring exists inside the string, it returns the lowest index where substring is found.

✓ If substring doesn't exist inside the string, it returns -1.

• For example:

V. >>> quote = 'it is not too old and it is not too late'

>>> print(quote.find('old'))

14

>>> quote = 'it is not too Old and it is not too late'

>>> print(quote.find('old'))

-1

VI. >>> quote = 'it is not too old and it is not too late'

>>> print(quote.find('o',10))

11

>>> print(quote.find('o',15))

29

VII. >>> quote = 'it is not too old and it is not too late'

>>> print(quote.find('too',9,30))

10

>>> print(quote.find('too',10,30))

10

>>> print(quote.find('too',20,30))

-1

>>> print(quote.find('too',30,20))

-1

>>> print(quote.find('too',20,40))

32

VIII. >>> quote = 'it is not too old and it is not too late'

>>> print(quote.find('and',-40,-10))

18

>>> print(quote.find('and',-10,-40))

-1

• Syntax:

 str.startswith(prefix[, start[, end]])

• The startswith() method takes maximum of three parameters:

✓ prefix - String or tuple of strings to be checked.

✓ start (optional) - Beginning position where prefix is to be checked within the string.

✓ end (optional) - Ending position where prefix is to be checked within the string.

• The startswith() method returns a boolean:

✓ It returns True if the string starts with the specified prefix.

✓ It returns False if the string doesn't start with the specified prefix.

• For example:

VIII. >>> text = 'Python is easy to learn'

>>> res = text.startswith('python')

>>> print(res)

False

IX. >>> text = 'Python is easy to learn'

>>> res = text.startswith('Python is easy')

>>> print(res)

True

X. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming',7)

>>> print(res)

True

XI. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming',8)

>>> print(res)

False

XII. >>> text = 'Python programming is easy'

>>> res = text.startswith('programming is',7,18)

>>> print(res)

False

XIII. >>> text = 'Python programming is easy'

>>> res = text.startswith('program',7,18)

>>> print(res)

True

XIV. >>> text = 'Python programming is easy'

>>> res = text.startswith('easy to',7,18)

>>> print(res)

False

4 (a) Write a program in python to prompt the user to enter the number from console multiple

times, until user enters ‘done’. Once ‘done’ is entered, find and display the average of the

these numbers which is stored in the list. (Note: Use built in functions of lists to find the

average).

Scheme:

Input – 1M

Logic correctness – 4M

Output – 2M

Solution:

num = [] # or num = list()

while(True):

 n = input('Enter a number: ')

 if n == 'done':

 break

 val = float(n)

 num.append(val)

avg = sum(num)/len(num)

print('The average is:', avg)

 [7] CO3 L3

 (b) Consider a string “pining*for*the fjords”, explain how to split the string based on * and

after splitting join them back with delimiter ---

Final Output : pining---for---the fjords.

Scheme:

Each step – 1M

Solution:

str = “pining*for*the fjords”

t = str.split(‘*’)

delimeter = '---'

delimeter.join(t)

 [3] CO3 L2

5 (a)

What are dictionaries in python? Write a program to display the total count of each character

in string ‘brontosaurus’ using dictionaries.

Output : {'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

[10]

CO3 L2

Scheme:

Definition – 2M

Input – 1M

Logic – 5M

Output – 2M

Solution:

➢ A dictionary is like a list, but more general. In a list, the index positions

have to be integers; in a dictionary, the indices can be (almost) any type.
➢ We can think of a dictionary as a mapping between a set of indices (which

are called keys) and a set of values. Each key maps to a value. The

association of a key and a value is called a key-value pair or sometimes an

item.

word = input('Enter the string: ')

d = dict()

for c in word:

 if c not in d:

 d[c] = 1

 else:

 d[c] = d[c] + 1

print(d)

6 (a) Write a program in python to get the following output.

 Enter the file name : Romeo.txt

The count of each word are as follows

{'and': 3, 'envious': 1, 'already': 1, 'fair': 1, 'is': 3, 'through': 1, 'pale': 1, 'yonder': 1, 'what': 1,

'sun': 2, 'Who': 1, 'But': 1, 'moon': 1, 'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,’grief': 1,

'with': 1, 'light': 1, 'It': 1, 'Arise': 1, 'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

Note: Romeo.txt contains the following paragraph

But soft what light through yonder window breaks

It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

Scheme:

Input: 2M

For loop for handling lines in file – 3M

For loop for finding the frequency – 4M

Output – 1M

Solution:

fname = input('Enter the file name: ')

try:

 [10] CO3 L3

 fhand = open(fname)

except:

 print('File cannot be opened:', fname)

 exit()

counts = dict()

for line in fhand:

 words = line.split()

 for word in words:

 if word not in counts:

 counts[word] = 1

 else:

 counts[word] += 1

print(counts)

7 (a) Briefly explain DSU pattern. Using DSU pattern, write a program to sort the words in a

string 'but soft what light in yonder window breaks' from longest to shortest.

[10]

CO3 L2

 Scheme:

 DSU Explanation - 3M

 Input – 1M

 For loop to append words – 2M

 Reverse the list – 1M

 Put the result in a list – 2M

 Output – 1M

Solution:

➢ The sort function works the same way. It sorts primarily by first element, but in the case of a tie, it

sorts by second element, and so on. This feature lends itself to a pattern called DSU for

• Decorate a sequence by building a list of tuples with one or more sort keys preceding the

elements from the sequence,

• Sort the list of tuples using the Python built-in sort, and

• Undecorate by extracting the sorted elements of the sequence.

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

 t.append((len(word), word))

print('\nThe list is:\n',t)

t.sort(reverse=True)

print('\nThe list after sorting is:\n',t)

res = list()

for length, word in t:

 res.append(word)

print('\nThe sorted list is:\n',res)

