

Scheme of Evaluation

Internal Assessment Test II – April 2019

Sub: Software Testing Code: 15IS63

Date: 16/04/2019 Duration: 90mins
Max

Marks: 50
Sem: VI Branch: ISE

Note: Answer Any Five Questions

Question

Description Marks Distribution Max

Marks

1

 What is a decision table? Design a decision table for

next date problem and derive the test cases.

• Defining decision table with example

• Equivalence classes for NextDate

• Decision Table

• Test Cases

2M

2M

3M
3M

10 M 10 M

2

 Analyze the commission problem from the perspective

of data flow testing, derive the DU paths for the

variables locks, stocks, barrels, sales and commission

and check whether they are definition clear paths

• Program code

• Program graph

• DU and DC paths for the variables

3 M

2 M

5 M

10 M 10 M

3

 Derive Basis paths for triangle problem using Mc

Cabe’s method and write the test cases for the derived

paths.

• Program code DD-Path graph

• Cyclomatic Complexity

• Identification of paths

• Test Cases

5M

1M

3M

1M

10 M
10 M

4

Explain with example i) Block Coverage ii) Condition

Coverage

i) Block Coverage definition with

equation

Example

ii) Condition Coverage definition with

equation

2.5M

2.5M

2.5M

10 M

10 M

Example

2.5 M

5

Write a short note on i) Scaffolding ii) Test Oracles.

• Scaffolding explanation with types

• Test Oracles explanation with types

5M
5 M

10 M 10 M

6

Explain slice based testing with example

• Definition of slice

• Example code

• Identifying slices

• Lattices

2M

3M

3M

2M

10 M 10 M

7

 List out the test coverage metrics and explain metric

based testing.

• Listing of Test coverage metrics

• Explanation of metric based testing

3M

7M

5 M 10 M

IAT-2 Solution

Software Testing (15IS63)

April 2018-19

1) What is a decision table? Design a decision table for next date problem and derive the test cases.

A decision table has four portions: the part to the left of the bold vertical line is the stub portion; to

the right is the entry portion. The part above the bold horizontal line is the condition portion, and

below is the action portion. Thus, we can refer to the condition stub, the condition entries, the action

stub, and the action entries. A column in the entry portion is a rule. Rules indicate which actions,

if any, are taken for the circumstances indicated in the condition portion of the rule.

M1 = {month: month has 30 days}

M2 = {month: month has 31 days except December}

M3 = {month: month is December}

M4 = {month: month is February}

D1 = {day: 1 ≤ day ≤ 27}

D2 = {day: day = 28}

D3 = {day: day = 29}

D4 = {day: day = 30}

D5 = {day: day = 31}

Y1 = {year: year is a leap year}

Y2 = {year: year is a common year}

2) Analyze the commission problem from the perspective of data flow testing, derive the DU paths

for the variables locks, stocks, barrels, sales and commission and check whether they are

definition clear paths.

Variable

name

Defined at node

Used at Node

lprice 7 24

sprice 8 25

bprice 9 26

tlocks 10,16 16,21,24

tstocks 11,17 17,22,25

tbarrels 12,18 18,23,26

locks 13,19 14,16

stocks 15 17

barrels 15 18

lsales 24 27

ssales 25 27

bsales 26 27

sales 27 28,29,33,34,37,39

comm 31,32,33,36,37,39 32,33,37,42

Test

case

id

Description

Variables Path

(Beginning, End nodes)

Du Paths

Definition

clear?

1

Check for lock price variable DEF(lprice,7) and

USE(lprice,24)

(7 , 24)

<7-8-9-10-11-12-13-14-15-16-17-

18-19-20-21-22-23-24>

Yes

2

Check for Stock price variable DEF(sprice,8) and

USE(sprice,25)

(8 , 25)

<8-9-10-11-12-13-14-15-16-17-18-

19-20-21-22-23-24-25>

Yes

3

Check for barrel price variable DEF(bprice,9)

and USE(bprice,26)

(9 , 26)

<9-10-11-12-13-14-15-16-17-18-

19-20-21-22-23-24-25-26>

Yes

4

Check for total locks variable DEF((tlocks,10) and

DEF(tlocks,16)) and 3 usage

node(USE(tlocks,16),USE(tlocks,21),USE(tlocks,2

4)

(10 , 16) <10-11-12-13-14-15-16> Yes

(10 , 21)

<10-11-12-13-14-15-16-17-18-19-

20-14-21>

No

(10 , 24)

<10-11-12-13-14-15-16-17-18-19-

20-14-21-22-23-24>

No

(16 , 16) <16-16> Yes

(16 , 21) <16-17-18-19-14-21> No

(16 , 24)

<16-17-18-19-20-14-21-22-23-24>

No

5

Check for total stocks variable DEF((tstocks,11) and

DEF(tstocks,17)) and 3 usage

node(USE(tstocks,17),USE(tstocks,22),USE(tstoc

ks,25)

(11 , 17)

<11-12-13-14-15-16-17>

Yes

(11 , 22)

<11-12-13-14-15-16-17-18-19-20-

21-14-21>

No

(11, 25)

<11-12-13-14-15-16-17-18-19-20-

21-14-21-23-24-25>

No

(17 , 17) <17-17> Yes

(17 , 22) <17-18-19-20-14-21-22> No

3) Derive Basis paths for triangle problem using Mc Cabe’s method and write the test cases for the

derived paths.

1) program triangle (input, output) ;

2) VAR a, b, c : integer;

3) IsATriangle : boolean;

4) BEGIN

5) writeln('Enter three integers which are sides of a triangle:');

6) readln (a,b,c);

7) writeln('Side A is ',a, 'Side B is ',b, 'side C is ',c);

8) IF (a < b + c) AND (b < a + c) AND (c < a + b)

9) THEN IsATriangle :=TRUE

10) ELSE IsATriangle := FALSE ;

11) IF IsATriangle

12) THEN

13) BEGIN

14) IF (a = b) XOR (a = c) XOR (b = c) AND NOT((a=b) AND (a=c))

15) THEN Writeln ('Triangle is Isosceles') ;

16) IF (a = b) AND (b = c)

17) THEN Writeln ('Triangle is Equilateral') ;

18) IF (a <> b) AND (a <> c) AND (b <> c)

19) THEN Writeln ('Triangle is Scalene') ;

20) END

21) ELSE WRITELN('Not a Triangle') ;

22) END.

p1: A-B-D-E-G-I-J-K-Last

p2: A-C-D-E-G-I-J-K-Last

p3: A-B-D-L-Last

p4: A-B-D-E-F-G-I-J-K-Last

p5: A-B-D-E-F-G-H-I-J-K-Last

p6: A-B-D-E-F-G-H-I-K-Last

If you follow paths p2, p3, p4, p5, and p6, you find that they are all infeasible. Path p2 is infeasible,

because passing through node C means the sides are not a triangle, so none of the sequel decisions

can be taken. Similarly, in p3, passing through node B means the sides do form a triangle, so node

L cannot be traversed. The others are all infeasible because they involve cases where a triangle is of

two types (e.g., isosceles and equilateral). The problem here is that there are several inherent

dependencies in the triangle problem. One is that if three integers constitute sides of a triangle, they

must be one of the three possibilities: equilateral, isosceles, or scalene. A second dependency is that

the three possibilities are mutually exclusive: if one is true, the other two must be false.

fp1: A-C-D-L-Last (Not a triangle)

fp2: A-B-D-E-F-G-I-K-Last (Isosceles)

fp3: A-B-D-E-G-H-I-K-Last (Equilateral)

fp4: A-B-D-E-G-I-J-K-Last (Scalene)

4) Explain with example i) Block Coverage ii) Condition Coverage

The block coverage of T with respect to (P, R) is computed as Bc/(Be -Bi) , where Bc is the number

of blocks covered, Bi is the number of unreachable blocks, and Be is the total number of blocks in

the program, i.e. the size of the block coverage domain.

T is considered adequate with respect to the block coverage criterion if the statement

coverage of T with respect to (P, R) is 1.

Coverage domain: Be={1, 2, 3, 4, 5}

Blocks covered:

t1: Blocks 1, 2, 5

t2, t3: same coverage as of t1.

Be=5 , Bc=3, Bi=1.

Block coverage for T2= 3/(5-1)=0.75.

Hence T2 is not adequate for (P, R) with respect to the block coverage criterion.

The condition coverage of T with respect to (P, R) is computed as Cc/(Ce -Ci) , where Cc is the number

of simple conditions covered, Ci is the number of infeasible simple conditions, and |Ce is the total number

of simple conditions in the program, i.e. the size of the condition coverage domain.

T is considered adequate with respect to the condition coverage criterion if the condition coverage of T with

respect to (P, R) is 1.

Consider the test set:

Check that T is adequate with respect to the statement, block, and decision coverage criteria

and the program behaves correctly against t1 and t2.

Cc=1, Ce=2, Ci=0. Hence condition coverage for T=0.5.

5) Write a short note on i) Scaffolding ii) Test Oracles.

Scaffolding:

Code produced to support development activities (especially testing)

• Not part of the “product” as seen by the end user

• May be temporary (like scaffolding in construction of buildings

Includes

• Test harnesses

i. Substitutes for other parts of the deployed environment

Ex: Software simulation of a hardware device

•

• Drivers:

i. A “main” program for running a test

1. May be produced before a “real” main program

2. Provides more control than the “real” main program

a. To driver program under test through test cases

• Stubs

i. Substitute for called functions/methods/objects

Generic or Specific scaffolding:

• How general should scaffolding be?

– We could build a driver and stubs for each test case

– ... or at least factor out some common code of the driver and test management (e.g., JUnit)

– ... or further factor out some common support code, to drive a large number of test cases

from data (as in DDSteps)

– ... or further, generate the data automatically from a more abstract model (e.g., network

traffic model)

• A question of costs and re-use

– Just as for other kinds of software

Test Oracles: If a software test is a sequence of activities (stimuli and observations), an oracle is

a predicate that determines whether a given sequence is acceptable or not

Comparison-based oracle

• With a comparison-based oracle, we need predicted output for each input

– Oracle compares actual to predicted output, and reports failure if they differ

• Fine for a small number of hand-generated test cases

– E.g., for hand-written JUnit test cases

Self-Checking Code as Oracle

• An oracle can also be written as self-checks

– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test suites, but often only a

partial check

– e.g., structural invariants of data structures

– recognize many or most failures, but not all

6) Explain slice based testing with example.

Program slice: Given a program P and a set V of variables in P, a slice on the variable set V at statement

n, written S(V, n), is the set of all statement fragments in P that contribute to the values of variables in

V at node n

So, for example, with respect to the price variable given in the example in section 2, the following

are slices for each use of the variable:

• S(price, 5) = {5}

• S(price, 6) = {5, 6, 8, 9}

• S(price, 7) = {5, 6, 8, 9}

• S(price, 8) = {8}

The program slice, as already mentioned, allows the programmer to focus specifically on the code

that is relevant to a particular variable at a certain point. However, the program slice concept also

allows the programmer to generate a lattice of slices: that is, a graph showing the subset relationship

between the different slices. For instance, looking at the previous example for the variable price,

the slices S(price, 5) and S(price, 8) are subsets of S(price, 7).

With respect to a program as a whole, certain variables may be related to the values of other

variables: for instance, a variable that contains a value that is to be returned at the end of the

execution may use the values of other variables in the program. For instance, in the main example

in this document, the finalPrice variable uses the totalPrice variable, which itself uses the price

variable. The finalPrice variable also uses the discount variable, which uses the staffDiscount and

totalPrice variables – and so on.

Therefore, the slices of the totalPrice and discount variables are a subset of the slice of the finalPrice

variable at lines 17 and 18, as they both contribute to the value. This subset relationship ‘ripples

down’ to the other variables, according to the use-relationship described.

This is shown visually in the following example:

• S(staffDiscount, 3) = {3}

• S(totalPrice, 4) = {4}

• S(totalPrice, 7) = {4, 5, 6, 7, 8}

• S(totalPrice, 11) = {4, 5, 6, 7, 8}

• S(discount, 12) = {3, 4, 5, 6, 7, 8, 11, 12}

• S(discount, 14) = {3, 4, 5, 6, 7, 8, 13, 14}

• S(finalPrice, 17) = {3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17}

Therefore, the lattice of slices for the finalPrice variable is as shown in Figure above. This

relationship, as shown in the lattice diagram, can feasibly help during testing, particularly if there’s

a fault. For instance, if there is an error in the slice of finalPrice, then, by testing the different subset

slices, you can eliminate them from the possible sources of the error (for instance, the error may be

generated from an incorrect calculation of the discount, for instance).

7) List out the test coverage metrics and explain metric based testing

C0: Every statement

C1 :Every DD-Path (predicate outcome)

C1p: Every predicate to each outcome

C2: C1 coverage + loop coverage

Cd: C1 coverage + every dependent pair of DD-Paths

CMCC:Multiple condition coverage

Cik:Every program path that contains up to k repetitions of a loop (usually k = 2)

Cstat: Statistically significant” fraction of paths

C∞ : All possible execution paths

Miller’s test coverage metrics are based on program graphs in which nodes are full statements,

whereas our formulation allows statement fragments to be nodes. For the remainder of this

section, the statement fragment formulation is “in effect”.

Statement and Predicate Testing

Statement fragments can be considered to be single nodes. In our triangle example is

a complete Pascal IF-THEN-ELSE statement. If we required nodes to correspond to

full statements, we could execute just one of the decision alternatives and satisfy the

statement coverage criterion. Because we allow statement fragments, it is “natural” to

divide such a statement into three nodes. Doing so results in predicate outcome

coverage. Whether or not our convention is followed, these coverage metrics require

that we find a set of test cases such that, when executed, every node of the program

graph is traversed at least once.

DD-Path Testing

When every DD-path is traversed (the C1 metric), we know that each predicate outcome

has been executed; this amounts to traversing every edge in the DD-path graph (or

program graph). Therefore, the C1 metric is exactly our Gchain metric. For if–then and

if–then–else statements, this means that both the true and the false branches are covered

(C1p coverage). For CASE statements, each clause is covered. Beyond this, it is useful to

ask how we might test a DD-path. Longer DD-paths generally represent complex

computations, which we can rightly consider as individual functions. For such DD-paths,

it may be appropriate to apply a number of functional tests, especially those for boundary

and special values.

Dependent Pairs of DD-Paths

The Cd metric foreshadows the dataflow testing. The most common dependency

among pairs of DD-Paths is the define/reference relationship, in which a variable is

defined (receives a value) in one DD-Path and is referenced in another DD-Path. The

importance of these dependencies is that they are closely related to the problem of

infeasible paths. We have good examples of dependent pairs of DD-Paths: in Figure

9.4, B and D are such a pair, so are DD-Paths C and L. Simple DD- Path coverage

might not exercise these dependencies, thus a deeper class of faults would not be

revealed.

Multiple Condition Coverage

Look closely at the compound conditions in DD-Paths A and E. Rather than simply

traversing such predicates to their TRUE and FALSE outcomes, we should

investigate the different ways that each outcome can occur. One possibility is to make

a truth table; a compound condition of three simple conditions would have eight

rows, yielding eight test cases. Another possibility is to reprogram compound

predicates into nested simple IF-THEN-ELSE logic, which will result in more DD-

Paths to cover. We see an interesting trade-off: statement complexity versus path

complexity. Multiple condition coverage assures that this complexity isn’t swept

under the DD-Path coverage rug.

Loop Coverage

The condensation graphs provide us with an elegant resolution to the problems of

testing loops. Loop testing has been studied extensively, and with good reason —

loops are a highly fault prone portion of source code. To start, an amusing taxonomy of

loops occurs (Beizer, 1984): concatenated, nested, and horrible, shown in Figure

Concatenated loops are simply a sequence of disjoint loops, while nested loops are such that

one is contained inside another. Knotted (Beizer calls them “horrible”) loops cannot occur

when the structured programming precepts are followed, but they can occur in languages like

Java with try/catch. When it is possible to branch into (or out from) the middle of a loop, and

these branches are internal to other loops, the result is Beizer’s knotted loop. We can also

take a modified boundary value approach, where the loop index is given its minimum,

nominal, and maximum values. We can push this further to full boundary value testing and

even robustness testing. If the body of a simple loop is a DD-path that performs a complex

calculation, this should also be tested, as discussed previously. Once a loop has been tested,

the tester condenses it into a single node. If loops are nested, this process is repeated starting

with the innermost loop and working outward. This results in the same multiplicity of test

cases we found with boundary value analysis, which makes sense, because each loop index

variable acts like an input variable. If loops are knotted, it will be necessary to carefully

analyze them in terms of the data flow method

