
OOC IAT-2 April 2019
Solution to IAT 2 Question paper

1 (a) Define Synchronization? Explain how Synchronization is achieved in JAVA? [10] CO4 L3

Synchronization:

● When two or more threads need access to a shared resource, they need
some way to ensure that the resource will be used by only one thread at a
time. The process by which this is achieved is called synchronization.

● Key to synchronization is the concept of the monitor (also called a
semaphore).

● A monitor is an object that is used as a mutually exclusive lock or mutex
● only one thread can own a monitor at a give time.
● When a thread acquires a lock, it is said to have entered the monitor.
● All other threads attempting to enter the locked monitor will be suspended

until the first thread exits the monitor. These other threads are said to be
waiting for the monitor.

● A thread that owns a monitor can reenter the same monitor if it so desires.
● As Java implements synchronization through language elements, most of the

complexity associated with synchronization has been eliminated.

Two ways of synchronization:

● We can synchronize code in two ways
1. Using synchronized methods
2. using synchronized statement

1. Using Synchronized Methods:

● Synchronization is easy in Java, because all objects have their own implicit
monitor associated with them.

● To enter an object’s monitor, just call a method that has been modified with
the synchronized keyword.

● While a thread is inside a synchronized method, all other threads that try to
call it on the same instance have to wait.

● To exit the monitor and relinquish control of the object to the next waiting
thread, the owner of the monitor simply returns from the synchronized
method.

Program Explanation:

● The example program below has three classes
● The first one, Callme class has a single method named call(). The call()

method takes a String parameter called msg. This method tries to print the
msg string inside of square brackets. But, after call() prints the opening
bracket and the msg string, it calls Thread.sleep(1000), which pauses the
current thread for one second.

● The second class is Caller. The constructor of this class takes a reference to
an instance of the Callme class and a String, which are stored in target and
msg, respectively.

● The constructor also creates a new thread that will call this object’s run()
method. The thread started immediately.

● The run() method of caller calls the call() method on the target instance of
Callme, passing in the msg string.

● Finally, the third class, Synch class starts by creating a single instance of
Callme, and three instances of Caller, each with a unique message string.
The same instance of Callme is passed to each Caller.

● we must serialize access to call(). That is, we must restrict its access to only
one thread at a time.

● To do this, we have to precede call()’s definition with the keyword
synchronized as shown
class Callme {
synchronized void call (String msg) {
….

● This prevents other threads from entering call() while another thread is using
it.

Program:

// This program is synchronized
class Callme {
 synchronized void call(String msg) {
 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }
}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;
 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread (this);
 t.start();
 }

 public void run() {
 target.call(msg);
 }
}

class Synch {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller (target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller (target, "World");

 // wait for the threads to end
 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 }
 catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

Output:
$ javac Synch.java
$ java Synch
[Hello]
[World]
[Synchronized]

2. The synchronized Statement:

● Creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, but, it will not work in all cases.

● If you want to synchronize access to objects of a class that was not designed
for multi-threaded access, the class does not use synchronized methods.

● If the class was not created by you, but by a third party and you do not have
access to the source code, you can’t add synchronized to the appropriate
methods within the class.

● The solution to this problem is you put calls to the methods defined by this
class inside a synchronized block.

● The general form of the synchronized statement
synchronized (object) {
// Statements to be synchronized
}

● The object is a reference to the object being synchronized.
● A synchronized block ensures that a call to a method that is a member of

object occurs only after the current thread has successfully entered object’s
monitor.

● Example program which uses synchronized block within run() method
// This program uses synchronized block
class Callme {
 void call(String msg) {
 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }
}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;
 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread (this);
 t.start();
 }

 // Synchronize calls to call()
 public void run() {
 synchronized (target) { // synchronized block
 target.call(msg);
 }
 }
}

class Synch1 {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller (target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller (target, "World");

 // wait for the threads to end

 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 }
 catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

Output:
$ javac Synch1.java
$ java Synch1
[Hello]
[World]
[Synchronized]

Program Explanation:

● In the above program, the call() method is not modified by synchronized.
Instead, the synchronized statement is used inside Caller’s run() method.

=================================XXX================================

2 (a) Briefly explain the role of interface in implementing Multiple Inheritance in
JAVA.

[5] CO3 L3

Multiple Inheritance is a feature of object oriented concept, where a class can inherit properties of
more than one parent class.

The problem occurs when there exist methods with same signature in both the super classes and
subclass. On calling the method, the compiler cannot determine which class method to be called and
even on calling which class method gets the priority.

Therefore, in order to avoid such complications Java does not support multiple inheritance of
classes. But, a class can implement two or more interfaces.

One significant difference between classes and interfaces is that classes can have fields whereas
interfaces cannot. Also, you can instantiate a class to create an object, which you cannot do with
interfaces.

Because interfaces do not contain fields, you do not have to worry about problems that
result from multiple inheritance of state.

A class can implement more than one interface, which can contain default methods that
have the same name. The Java compiler provides some rules to determine which default
method a particular class uses.

Example program to demonstrate multiple inheritance using interface:

// Program to demonstrate multiple inheritance using interface

// Define the interface I1

interface I1 {

 void showI1() ;

}

// Define the interface I2

interface I2 {

 void showI2();

}

// Define MInheritance that implements both I1 and I2

class MInheritance implements I1, I2 {

 // Implement I1's interface

 public void showI1() {

 System.out.println("Inside showI1");

 }

 // Implement I2's interface

 public void showI2() {

 System.out.println("Inside showI2");

 }

 }

 class TestMI {

 public static void main(String args[]) {

 MInheritance MI = new MInheritance();

 MI.showI1();

 MI.showI2();

 }

}

Output:

$ javac TestMI.java

$ java TestMI

Inside showI1

Inisde showI2

Program Explanation:

● The program defines two interfaces I1 and I2.

● The class Minheritance implements from both interfaces I1 and I2. The method of both the
interfaces showI1() and showI2 are implemented in this class.

● The class TestMI creates an instance of Minheritance and calls both the methods showI1()
and showI2().

2(b) Explain function overloading with example.

[5] CO1 L3

Function Overloading:

● C++ allows two or more functions to have the same name, but they must have different
signatures.

● Signature of a function means the number, type, and sequence of formal arguments of
the function.

● In order to distinguish amongst the functions with the same name, the compiler expects their
signature to be different.

● Depending upon the type of parameters that are passed to the function call, the compiler
decides which of the available definitions will be invoked.

● For this, function prototypes should be provided to the compiler for matching the function
calls.

● Accordingly the linker, during the link time, links the function call with the correct function
definition.

Example program to demonstrate function overloading:

#include<iostream>
using namespace std;

int add(int,int);
int add (int,int,int);

int main()
{

int x,y;
x = add(10,20);
y = add(30, 40, 50);
cout << x << endl<< y << endl;

}

int add(int a, int b)
{

return (a+b);
}

int add(int a, int b, int c)
{

return (a+b+c);

}

Output:
$ g++ funcOverload.C
$./a.out
30
120

● Like ordinary functions, the definition of overloaded functions are also put in libraries and
function prototypes are placed in header files.

● The two function prototypes at the beginning of the program tell the compiler the two
different ways in which the add() function can be called.

● When the compiler encounters the two distinct calls to the add() function, it already has the
prototypes to satisfy them both. Hence, the compilation phase is completed successfully.

● During the linking, the linker finds the two necessary definitions of the add() function and
hence links successfully to create the executable file.

● The compiler decides which function is to be called based upon the number, type and
sequence of parameters that are passed to the function call.

● When the compiler encounters the first function call,
x = add (10, 20);
it decides that the function that takes two integers as formal arguments is to be executed.

● Accordingly, the linker then searches for the definition of the add() function where there are
two integers as formal arguments.

● Similarly, the second call to the add() function
y = add(30, 40, 50);
is also handled by compiler and the linker.

● Since the function prototyping is mandatory in C++, it is possible for the compiler to
support function overloading properly.

● Function overloading is also known as function polymorphism.
● Function polymorphism is static in nature because the function definition to be executed is

selected by the compiler during compile time itself. Thus an overloaded function is said to
exhibit static polymorphism.

=================================XXX================================

3 (a) Define Custom Exception? Explain How Custom Exception is created with
an example.

[10] CO3 L3

Custom Exception:

● A user defined exception is known as custom exception.

● Java custom exceptions are used to customize the exception according to user need.

● With the help of custom exception, we can have our own exception and message.

● We can create our own exception types to handle situations specific to our applications.
● To create your own Exception, define a subclass of Exception, which is inturn a subclass of

Throwable.
● Your subclass need not implement anything. Its existence in the type system allows you to

use them as exceptions.

● The Exception class does not define any methods of its own. It inherits those methods
provided by Throwable.

● Thus, all exceptions, including those that you create, have the methods defined by
Throwable available to them.

● To name a few, the methods are
1. Throwable fillInStackTrace()
2. Throwable getCause()
3. String getLocalizedMessage()
4. String getMessage()
5. StackTraceElement [] getStackTrace()
6. Throwable initCause (Throwble causeExc)
7. void printStackTrace()
8. String toString ()

● You can override one or more of these methods in exception classes that you create.
● Exception defines four constructors

1. Exception()
2. Exception(String msg)
3. Throwable(Throwable causeExc)
4. Throwable(String msg, Throwable causeExc)

Example Program

Program Explanation:

● The following example declares a new subclass of Exception and then uses that subclass to
signal an error condition in a method.

● It overrides the toString() method, allowing a description of the exception to be displayed.

Program:

//This program creates a custom exception type
class MyException extends Exception {
 private int detail;

 MyException(int a) {
 detail = a;
 }
 public String toString() {
 return "MyException[" + detail + "]";
}
}

class ExceptionDemo {
 static void compute (int a) throws MyException {

System.out.println("Called compute (" + a + ")");
if (a > 10)
 throw new MyException(a);
System.out.println("Normal exit");
}
 public static void main (String args[]) {
 try {
 compute(1);
 compute(20);
 }
 catch (MyException e) {
 System.out.println("Caught " + e);
 }
}
}

Output:
$ javac ExceptionDemo.java
$ java ExceptionDemo
Called compute (1)
Normal exit
Called compute (20)
Caught MyException[20]

=================================XXX================================

4 (a) Define Package? Describe the various levels of access protection for Packages
and their implication.

[10] CO3 L3

Package:
● Packages are containers for classes that are used to keep the class name space

compartmentalized.
● For example, a package allows you to create a class named List, which you can store in your

own package without concern that it will collide with some other class named List stored
elsewhere.

● Packages are stored in a hierarchical manner and are explicitly imported into new class
definitions.

● Packages act as containers for classes and other subordinate packages.
● Classes act as containers for data and code. The class is Java’s smallest unit of abstraction.
● Java addresses four categories of visibility for class members, they are

1. Subclasses in the same package
2. Non-subclasses in the same package
3. Subclasses in different packages
4. Classes that are neither in the same package nor subclasses

● The three access specifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories.

● Anything declared public can be accessed from anywhere.
● Anything declared private cannot be seen outside of its class.
● When a member does not have an explicit access specification, it is visible to subclasses as

well as to other classes in the same package. This is the default access.
● If you want to allow an element to be seen outside your current package, but only to classes

that subclass your class directly, then declare that element protected.
● A non-nested class has only two possible access levels: default and public. When a class is

declared as public, it is accessible by any other code.
● If a class has default access, then it can only be accessed by other code within its same

package.
● When a class is public, it must be the only public class declared in the file, and the file must

have the same name as the class.
● The table shows class member access

 Private No

Modifier
Protected Public

Same class Yes Yes Yes Yes
Same

package
subclass

No Yes Yes Yes

Same
package

non-subclas
s

No Yes Yes Yes

Different
package
subclass

No No Yes Yes

Different
package

non-subclas
s

No No No Yes

=================================XXX================================

5 (a)What you mean by Thread? Explain how thread can be created in

JAVA?

[10] CO4 L3

● A thread is a path of execution within a process. A process can contain
multiple threads.

● Java provides built-in support for multi threaded programming. A
multi-threaded program contains two or more parts that can run concurrently.
Each part of such a program is called a thread, and each thread defines a
separate path of execution. Thus multi threading is a specialized form of
multitasking.

Creating a Thread

A thread can be created in two ways
1. we can implement the Runnable interface
2. we can extend the Thread class

1. Creating a thread by Implementing Runnable interface:

● To create a thread by implementing Runnable interface, create a class that
implements the Runnable interface.

● Runnable abstracts a unit of executable code.
● To implement Runnable, a class has to implement a single method called

run(), which is declared like this -
public void run()

● Inside run(), you will define the code that constitutes the new thread.
● Run() can call other methods, use other classes and declare variables just

like the main thread can.
● The only difference is that run() establishes the entry point for another

concurrent thread of execution within your program. This thread will end
when run() returns.

● After you create a class that implements Runnable, you will instantiate
an object of type Thread from within that class. Thread defines several
constructors. One such constructor is
Thread (Runnable threadOb, String threadName)

● In this constructor, threadOb is an instance of a class that implements the
Runnable interface. This defines where execution of the thread will begin.
The name of the new thread is specified by threadName.

● After the new thread is created, it will not start running until you call its start()
method, which is declared within Thread. In essence, start executes a call to
run(). The start() method is shown here
void start()

● Example program that creates a new thread and starts it running:

// create a second thread
class NewThread implements Runnable {
 Thread t;
 NewThread() {
 //Create a new, second thread
 t = new Thread(this, "Demo Thread");
 System.out.println("Child thread :" + t);
 t.start(); // start the thread
 }
 // This is the entry point for the second thread
 public void run() {
 try {
 for (int i=5; i >0;i--) {
 System.out.println("child Thread:" + i);
 Thread.sleep(500);
 }

 }
 catch (InterruptedException e) {
 System.out.println("Child Interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

class ThreadDemo {
 public static void main(String args[]) {
 new NewThread(); // create a new thread
 try {
 for(int i=5;i>0;i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting");
 }
}

$ javac ThreadDemo.java
$ java ThreadDemo
Child thread :Thread[Demo Thread,5,main]
Main Thread: 5
child Thread:5
child Thread:4
Main Thread: 4
child Thread:3
child Thread:2
Main Thread: 3
child Thread:1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting

Note:

● In a multi-threaded program, often the main thread must be the last thread to
finish running.

● In older JVMs, if the main thread finishes before a child thread has
completed, then the Java run-time system may “hang”.

● The above program ensures that the main thread finished last, because the
main thread sleeps for 1000 milliseconds between iterations, but the child
sleeps for only 500 milliseconds.

● This causes the child thread to terminate earlier than the main thread.

2. Creating a thread by extending Thread class:
● The second way to create a thread is to create a new class that extends

Thread, and then to create an instance of that class.
● The extending class must override the run() method, which is the entry point

for the new thread.
● It must also call start() to begin execution of the new thread.
● The following is the example program -

// Create a second thread by extending Thread
class NewThread extends Thread {
 NewThread () {
 // Create a new, second thread
 super("Demo Thread");
 System.out.println("Child thread: " + this);
 start(); // Start the thread
 }

 // This is the entry point for the second thread.
 public void run() {
 try {
 for(int i = 5;i >0; i--) {
 System.out.println("Child thread :" + i);
 Thread.sleep(500);
 }
 }
 catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

class ExtendThread {
 public static void main(String args[]) {
 new NewThread(); // Create a new thread
 try {
 for(int i = 5;i>0;i--) {
 System.out.println("Main thread : " + i);
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException e) {

 System.out.println("Main thread Interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

Output:
$ javac ExtendThread.java
$ java ExtendThread
Child thread: Thread[Demo Thread,5,main]
Child thread :5
Main thread : 5
Child thread :4
Main thread : 4
Child thread :3
Child thread :2
Main thread : 3
Child thread :1
Exiting child thread.
Main thread : 2
Main thread : 1
Main thread exiting.

Program Explanation:

This program generates the same output as the previous version.
The child thread is created by instantiating an object of NewThread, which is

derived from Thread.
Notice the call to super() inside NewThread. This invokes the following form of the

Thread constructor:
public Thread (String threadName)
threadName specifies the name of the thread.

=================================XXX================================

6 (a)Define Reference variable? Explain. Write C++ program to swap two
integers. Display the values Before and after swapping using reference
variable.

[5] CO1 L2

Ans:

● A reference variable can be defined as a reference for an existing variable.
● It shares the memory location with an existing variable.
● The syntax for declaring a reference variable is as follows -

<data-type> & <ref-var-name> = < existing-var-name>;
● Example:

int & iRef = x;

● iRef is a reference to x. This means that although iRef and x have separate entries in the OS,
their addresses are actually the same.

● Thus a change in the value of x will naturally reflect in iRef and vice versa.
● Reference variables must be initialized at the time of declaration otherwise the compiler will

not know what address it has to record for the reference variable.
● After their creation, reference variable function just like any other variable.
● The value of a reference variable can be read in the same way as the value of an ordinary

variable is read.
● A reference variable can be a function argument and thus change the value of the parameter

that is passed to it in the function call.
● Functions can return by reference also.

C++ Program to swap two integers using reference variable
#include <iostream>
using namespace std;
void swap(int &,int &);
int main()
{

int a,b;
cout << "Enter Value of A :";
cin >> a;
cout << "Enter value of B:";
cin >> b;
cout << "Before swapping Value of A is " << a ;
cout << "Value of B is " << b << endl;
swap(a,b);
cout << "After Swapping " << endl;
cout << "Value of A is " << a << endl;
cout << "Value of B is " << b << endl;

}

void swap (int & a, int & b)
{

int temp;
temp = a;
a = b;
b = temp;
cout << "Inside swap function after swapping " << endl;
cout << "Value of A is " << a << endl;
cout << "Value of B is " << b << endl;

}

Output:
$ g++ swap.C
$./a.out
Enter Value of A :34
Enter value of B:98
Before swapping Value of A is 34Value of B is 98
Inside swap function after swapping
Value of A is 98
Value of B is 34

After Swapping
Value of A is 98
Value of B is 34

6(b) Differentiate between Procedure Oriented Programming and Object
Oriented programming.

[5] CO1 L2

Procedure Oriented Programming Object Oriented Programming

1 Program is divided into small parts
called functions

Program is divided into parts called objects

2 Focus is on procedures. The code is
centered around procedures.

Focus is on data. Code is centered around
data.

3 Procedures are dissociated from data
and are not part of it.

Procedures are bound to the data.

4 Data is not secure. Compilers that
implement the procedure-oriented
programming system do not prevent
unauthorized functions from
accessing/manipulating structure
variables.

Enables data security by throwing compile
time errors against piece of code that
violate the prohibition.

5 Data is not initialized Provides guaranteed initialization of of
data. Programmers can ensure a
guaranteed initialization of data members
of structure variables to the desired values.

6. Overloading is not supported Supports overloading of operators and
functions

7 Top-down approach Bottom-up approach

8 Doesn’t support inheritance Supports inheritance which allows one
structure to inherit the characteristics of
an existing structure.

9 Doesn’t support polymorphism Supports polymorphism which allows
functions with different set of formal
arguments to have the same name.

10 Doesn’t Supports Encapsulation Supports encapsulation, data and
functions that act upon the data are
enclosed within a single unit called
class.

=================================XXX================================

7 (a) With example, give two uses of super [5] CO3 L5

● super is the keyword using which the subclass refers to its immediate superclass.
● super has two general forms

1. The first calls the superclass’ constructor.
2. The second is used to access a member of the superclass that has been hidden by member
of a subclass.

1. Using super to call superclass constructors:
● A subclass can call a constructor defined by its superclass by use of the following form of

superclass
super(arg-list);
Here, arg-list specifies any arguments needed by the constructor in the superclass.

● super() must always be the first statement executed inside a subclass’ constructor.
● Example program to demonstrate the use of super

// Example program to demonstrate super
// create a superclass
class Box {

double width;
double height;
double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// Constructor when no dimensions specified
Box () {

width = -1;
height = -1;
depth = -1;

}

// Constructor used when cube is created
Box (double len) {

width = height = depth =len;
}

// Compute and return volume
double volume() {

return height * depth * width;
}

}

// Here, Box is extended to include weight
class BoxWeight extends Box {

double weight; // weight of Box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor

 super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {

super(w,h,d);
weight = m;

}

// default constructor
BoxWeight() {

super();
weight = -1;

}

// Constructor used when cube is created
BoxWeight(double len, double m) {

super(len);
weight = m;

}
}

class Super {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();
}

}

Output:
$ javac Super.java
$ java Super
Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Program Explanation:
1. In the above program, BoxWeight() calls super() with the arguments w, h and d.

2. This causes the Box() constructor to be called, which Initializes width, height and depth
using these values.

3. BoxWeight no longer initialized these values itself.
4. It only needs to initialize the value unique to it, that is weight.
5. Since constructors can be overloaded, super() can be called using any form defined by the

superclass. The constructor executed will be the one that matches the argument.
Key points to remember:

● super() always refers to the superclass immediately above the calling class.
● This is true even in multilevel hierarchy.
● super() must always be the first statement executed inside a subclass constructor.

2. Second use of super to access a member of the superclass:
● The second form of super always refers to the superclass of the subclass in which it is used.
● The general form is

super.member
Here, member can be either a method or an instance variable.

● The second form of super is most applicable to situations in which member names of a
subclass hide members by the same name in the superclass.

● Example program to demonstrate second use of superclass

// using super to overcome name hiding
class A {
int i;
}
// create a subclass by extending class A
class B extends A {
int i; // this i hides i in A
B(int a, int b) {
super.i = a; // i in A
i = b;// i in B
}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass:" + i);
}
}

class UseSuper {
public static void main(String args[]) {
B subOb = new B(1,2);

subOb.show();
}
}

Output:
$ javac UseSuper.java
$ java UseSuper
i in superclass: 1
i in subclass:2

 (b) With the syntax explain the use of isAlive() and join(). [5] CO4 L5

Using isAlive() and join():

● In a multi-threaded program, often the main thread must be the last thread to
finish running.

● This is accomplished by calling sleep() within main(), with a long enough
delay to ensure that all child threads terminate prior to the main thread.

● But, this is not the right method as the child might take more than the sleep
time.

● If main thread comes to know if all child threads has ended or not then,
problem is solved.

● The solution to this problem is there should be a way to know if the thread
has ended or not.

● There are two ways to determine whether a thread has finished.

1. isAlive() method:
◦ First, you can call isAlive() on the thread. Its general form is

final boolean isAlive()
◦ The isAlive method returns true if the thread upon which it is called is still

running. It returns false otherwise.

2. join() method:
◦ The second method that will be more commonly used to wait for a thread

to finish is called join(). Its general form is
final void join() throws InterruptedException

◦ This method waits until the tread on which it is called terminates.
◦ Its name comes from the concept of the called thread waiting until

the specified thread joins.
◦ Additional forms of join() allows to specify a maximum amount of time that

you want to wait for the specified thread to terminate.
Example program to demonstrate the use of join() and isAlive():
// program DemoJoin.java
// using join() to wait for threads to finish.

class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread (String threadname) {
 name = threadname;
 t = new Thread (this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for the thread.
 public void run() {
 try {
 for(int i = 5;i >0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException e) {
 System.out.println(name + " Interrupted");
 }
 System.out.println(name + "exiting.");
 }
}

class DemoJoin {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread ("One"); // Start threads
 NewThread ob2 = new NewThread ("Two");
 NewThread ob3 = new NewThread ("Three");

 System.out.println("Thread one is alive: " + ob1.t.isAlive());

System.out.println("Thread Two is alive: " + ob2.t.isAlive());
System.out.println("Thread Three is alive: " + ob3.t.isAlive());

// wait for threads to finish
try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
}

 catch (InterruptedException e) {
 System.out.println("Main thread Interrupted.");
 }

 System.out.println("Thread one is alive: " + ob1.t.isAlive());
System.out.println("Thread Two is alive: " + ob2.t.isAlive());
System.out.println("Thread Three is alive: " + ob3.t.isAlive());

 System.out.println("Main thread exiting.");
 }
}

Output:
$ javac DemoJoin.java
$ java DemoJoin
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
One: 5
New thread: Thread[Three,5,main]
Two: 5
Three: 5
Thread one is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1
Oneexiting.
Twoexiting.
Threeexiting.
Thread one is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

Note:

● You can observe that, after the calls to join() return, the threads have stopped
executing.

=================================XXX================================

