

Q. 1 a) Explain package and its type and import command in Java with example - 6M

A package as the name suggests is a pack(group) of classes, interfaces and other

packages. In java we use packages to organize our classes and interfaces. We have

two types of packages in Java: built-in packages and the packages we can create

(also known as user defined package). In this guide we will learn what are

packages, what are user-defined packages in java and how to use them.

In java we have several built-in packages, for example when we need user input,

we import a package like this:

import java.util.Scanner

Here:

→ java is a top level package

→ util is a sub package

→ and Scanner is a class which is present in the sub package util.

Types of packages in Java

Types of packages:

Internal Assessment 1 – March 2019

Scheme and Solutions

Sub: Object Oriented Concepts
Sub

Code:
17CS42 Branch: ISE

Date: 15-4-2019 Duration: 90 min’s
Max

Marks:
50

Sem /

Sec:
4 OBE

Built-in Packages
These packages consist of a large number of classes which are a part of Java

API.Some of the commonly used built-in packages are:

1) java.lang: Contains language support classes(e.g classed which defines

primitive data types, math operations). This package is automatically imported.

2) java.io: Contains classed for supporting input / output operations.

3) java.util: Contains utility classes which implement data structures like Linked

List, Dictionary and support ; for Date / Time operations.

User-defined packages
These are the packages that are defined by the user. First we create a directory

myPackage (name should be same as the name of the package). Then create the

MyClass inside the directory with the first statement being the package names.

Q. 1b) Write a Java program for illustrating the exception handling when the number is divided by zero -

4M

Q. 2 a) Write a Java Program to define interface called Area which contains method called compute()

and calculate the areas of rectangle (l * b) and triangle (1/2 * b * h) using classes rectangle and triangle

-7M

interface area

{

double compute ();

}

class Rectangle implements area

{

double l,b;

void getvalues()

{

l = 10.5F

b = 7.3F

}

public double compute ()

{

return (l*b);

}

}

class TRI extends Rectangle implements area

{

public double compute ()

}

return (0.5*b*l);

}

}

class prog6b

{

public static void main(String [] args)

{

Rectangle R = new Rectangle ();

R.getvalues();

System.out.println(“Area of rectangle =“ +R.compute());
TRI T = new TRI();

T.getvalues();

System.out.println(“Area of triangle=“ + T.compute());
}

}

Q.2 b) What is the importance of finally block? -3M

Q. 3 a) Define the concept of multithreading in Java and explain the different phases in the life cycle of

thread, with a neat sketch -6M

Multithreading in java is a process of executing multiple threads simultaneously.

A thread is a lightweight sub-process, the smallest unit of processing.

Multiprocessing and multithreading, both are used to achieve multitasking.

However, we use multithreading than multiprocessing because threads use a shared

memory area. They don't allocate separate memory area so saves memory, and

context-switching between the threads takes less time than process.

Java Multithreading is mostly used in games, animation, etc

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use

multitasking to utilize the CPU. Multitasking can be achieved in two ways:

 Process-based Multitasking (Multiprocessing)

 Thread-based Multitasking (Multithreading)

Life cycle of a Thread (Thread States)

A thread can be in one of the five states. According to sun, there is only 4 states in

thread life cycle in java new, runnable, non-runnable and terminated. There is no

running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are

as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

Q. 3b) Explain keyEvent class with example -4M

Q. 4 a) Elucidate the two ways of making a class threadable, with examples – 7M

How to create thread

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

1) Java Thread Example by extending Thread class

1. class Multi extends Thread{

2. public void run(){

3. System.out.println("thread is running...");

4. }

5. public static void main(String args[]){

6. Multi t1=new Multi();

7. t1.start();

8. }

9. }

Output:thread is running...

2) Java Thread Example by implementing Runnable interface

1. class Multi3 implements Runnable{

2. public void run(){

3. System.out.println("thread is running...");

4. }

5.

6. public static void main(String args[]){

7. Multi3 m1=new Multi3();

8. Thread t1 =new Thread(m1);

9. t1.start();

10. }

11. }

Output:thread is running...

Q. 4 b) What is synchronization? When do we use it? -3M

When we start two or more threads within a program, there may be a situation when multiple

threads try to access the same resource and finally they can produce unforeseen result due to

concurrency issues. For example, if multiple threads try to write within a same file then they may

corrupt the data because one of the threads can override data or while one thread is opening the

same file at the same time another thread might be closing the same file.

So there is a need to synchronize the action of multiple threads and make sure that only one

thread can access the resource at a given point in time. This is implemented using a concept

called monitors. Each object in Java is associated with a monitor, which a thread can lock or

unlock. Only one thread at a time may hold a lock on a monitor.

Java programming language provides a very handy way of creating threads and synchronizing

their task by using synchronized blocks. You keep shared resources within this block. Following

is the general form of the synchronized statement −

Q. 5 a) Explain delegation event model used to handle events in Java – 6M

The event model is based on the Event Source and Event Listeners. Event Listener is an object

that receives the messages / events. The Event Source is any object which creates the message /

event. The Event Delegation model is based on – The Event Classes, The Event Listeners, Event

Objects.

There are three participants in event delegation model in Java;

- Event Source

- Event Listeners – the classes which receive notifications of events

- Event Classes – the class object which describes the event.

An event occurs (like mouse click, key press, etc) which is followed by the event is broadcasted

by the event source by invoking an agreed method on all event listeners. The event object is

passed as argument to the agreed-upon method. Later the event listeners respond as they fit, like

submit a form, displaying a message / alert etc.

Q.5 b) Explain inner class with example -4M

Java inner class or nested class is a class which is declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more

readable and maintainable.

1. class Java_Outer_class{

2. //code

3. class Java_Inner_class{

4. //code

5. }

6. }

Q. 6 a) What are two types of applets? Explain the skeleton of an applet -6M

Applet is a Java program that can be transported over the internet and executed by a Java enabled web-

browser(if browser is supporting the applets) or an applet can be executed using appletviewer utility

provided with JDK.

There are two types of applet -

 Applets based on the AWT(Abstract Window Toolkit) package by extending its Applet class.

 Applets based on the Swing package by extending its JApplet class

Q. 6 b) Explain getDocumentBase and getCodebase in applet class

Q. 7 a) Explain the role of synchronization in producer consumer problem with example-10M

In computing, the producer–consumer problem (also known as the bounded-buffer problem) is a

classic example of a multi-process synchronization problem. The problem describes two

processes, the producer and the consumer, which share a common, fixed-size buffer used as a

queue.

 The producer’s job is to generate data, put it into the buffer, and start again.

 At the same time, the consumer is consuming the data (i.e. removing it from the buffer),

one piece at a time.

Problem
To make sure that the producer won’t try to add data into the buffer if it’s full and that the

consumer won’t try to remove data from an empty buffer.

Solution
The producer is to either go to sleep or discard data if the buffer is full. The next time the

consumer removes an item from the buffer, it notifies the producer, who starts to fill the buffer

again. In the same way, the consumer can go to sleep if it finds the buffer to be empty. The next

time the producer puts data into the buffer, it wakes up the sleeping consumer.

Output:

	Types of packages in Java
	Multitasking
	Life cycle of a Thread (Thread States)
	How to create thread
	1) Java Thread Example by extending Thread class
	2) Java Thread Example by implementing Runnable interface
	There are two types of applet -

