

USN

Internal Assessment Test II – APRIL 2019

Sub: Microprocessor and Microcontroller Sub Code: 17CS44 Branch: CSE

Date: 16/04/2019 Duration: 90 min’s Max Marks: 50 Sem/Sec: A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Explain the following instructions with suitable examples.

i) RCR ii)DAA iii)AAM iv)DAS v)SHR

[10] CO2 L2

2. Write an ALP to convert the ASIIC data ‘98473211’ to the following and store the

result to a reserved memory location.

i) Unpacked BCD ii) Packed BCD

[10] CO2

3a. What is an interrupt? Explain various types with an interrupt vector table. [06] CO2 L2

 b. List the steps involved while processing an Interrupt. [04] CO2 L2

4. Write an Alp to perform the following.

a) Clear the screen b) Set the cursor at Row=8, Column =10.

c) prompt “There is a message from CMRIT, Enter Y to read it $” . If the user

enters ‘Y’ or ‘y’ the message “Hello, All the best “ appears on the screen. If the user

enters any other key then the messge “No more Messages “ must appear on the

screen.

[10] CO2

 MARKS CO RBT

5. Write an ALP to scan the string “cMRITcSE” and replace the letter ‘c’ with ‘C’

and display the corrected string. Write appropriate comments

[10] CO2

6 a. With suitable examples, explain how to identify overflow using flags for performing

arithmetic operations on a 16 bit signed numbers.

[05] CO2 L2

b. Explain the following instructions with suitable examples.

i) CBW ii) IDIV iii) XLAT

[05] CO2 L2

7 a. Explain the control word format of 8255 in I/O mode and BSR mode. [05] CO3 L2

 b. Write an Alp to read from Pb and check the number of ones in a given 8 bit data at

PB and display 0FFh on PA if it is even parity else 00h on PA if it is odd parity.

[05] CO3

8 a. Differentiate between RISC and CISC processors. [04] CO4 L2

 b. Explain the architecture of embedded system hardware with the help of suitable

block diagram.

[06] CO4 L2

SOLUTION:

1. Explain the following instructions with suitable examples.

i) RCR ii)DAA iii)AAM iv)DAS v)SHR

DAS

2. Write an ALP to convert the ASIIC data ‘98473211’ to the following and store the result to a

reserved memory location.

i) Unpacked BCD ii) Packed BCD

.MODEL SMALL

.STACK 64H

.DATA

Data_ASC DB ‘98473211’

LEN DW (LEN-DATA_ASC)/2

PK_BCD DB LEN DUP(0)

UN_BCD DWLEN DUP(0)

.CODE

MOV AX,@DATA

MOV DS,AX

LEA BX, DATA_ASC

LEA SI, PK_BCD

LEA DI,UN_BCD

MOV CX,LEN

AGAIN: MOV AX,[BX] ; AH= 38H, AL=39H

AND AX, 0F0FH ; AH=08H, AL=09H

MOV [DI], AX

PUSH CX

MOV CL,4

SHL AL,CL ; AL=90H

POP CX

ADD AL, AH ; AL=98H, AH=08H

MOV [SI], AL

ADD BX, 2

INC SI

INC DI

LOOP AGAIN

MOV AH, 4CH

INT 21H

END

3a.What is an interrupt? Explain various types with an interrupt vector table.

 Interrupt is the method of creating a temporary halt during program execution and allows peripheral devices to

access the microprocessor. The microprocessor responds to that interrupt with an ISR (Interrupt Service

Routine), which is a short program to instruct the microprocessor on how to handle the interrupt.

The figure shows the types of interrupts that is present in a 8086 microprocessor –

 Hardware Interrupts
Hardware interrupt is caused by any peripheral device by sending a signal through a specified pin to the

microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable interrupt and INTR is a

maskable interrupt having lower priority. One more interrupt pin associated is INTA called interrupt

acknowledge.

NMI:

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable interrupt request pin

(INTR) and it is of type 2 interrupt.

INTR:

The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts are enabled

using set interrupt flag instruction. It should not be enabled using clear interrupt Flag instruction. The INTR

interrupt is activated by an I/O port. If the interrupt is enabled and NMI is disabled, then the microprocessor first

completes the current execution and sends ‘0’ on INTA pin twice. The first ‘0’ means

INTA informs the external device to get ready and during the second ‘0’ the microprocessor receives the 8 bit,

say X, from the programmable interrupt controller.

There are 8 maskable interrupts present in 8086. They are mapped to INT 8H to INT 0FH

Software Interrupts
Some instructions are inserted at the desired position into the program to create interrupts. These interrupt

instructions can be used to test the working of various interrupt handlers.

INT- Interrupt instruction with type number
It is 2-byte instruction. First byte provides the op-code and the second byte provides the interrupt type number.

The first five pointers are dedicated interrupt pointers. i.e. −
 TYPE 0 interrupt represents division by zero situation and division overflow.

TYPE 1 interrupt represents single-step execution during the debugging of a program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

TYPE 3 interrupt represents break-point interrupt.

TYPE 4 interrupt represents overflow interrupt.

INT 3-Break Point Interrupt Instruction
This instruction is inserted into the program so that when the processor reaches there, then it stops the normal

execution of program and follows the break-point procedure.

INTO - Interrupt on overflow instruction
It is a 1-byte instruction and their mnemonic INTO. As the name suggests it is a conditional interrupt instruction,

i.e. it is active only when the overflow flag is set to 1 and branches to the interrupt handler whose interrupt type

number is 4. If the overflow flag is reset then, the execution continues to the next instruction.

Processing of Interrupts by 8086:

Interrupt Service Routine
For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When an interrupt is

invoked, the microprocessor runs the interrupt service routine. For every interrupt, there is a fixed location in

memory that holds the address of its ISR. The group of memory locations set aside to hold the addresses of

ISRs is called the interrupt vector table. When an interrupt is occurred, the microprocessor stops execution of

current instruction. It transfers the content of flag register, CS and IP onto stack. After this, it jumps to the

memory location specified by

Interrupt Vector Table The first 1Kbyte of memory of 8086 (00000 to003FF) is set aside as a table for storing

the starting addresses of Interrupt Service Routines(ISR).Since 4-bytes are required for storing starting

addresses of ISRs (CS and IP), the table can hold 256 Interrupt procedures. The starting address of an ISR is

often called the Interrupt Vector or Interrupt Pointer. Therefore the table is referred as Interrupt Vector Table.

In this table, IP value is put at lower word of the vector & CS is put at higher vector.

b. List the steps involved while processing an Interrupt.

Processing Interrupts in 8086:
If an interrupt has been requested, the 8086 responds to the interrupt by stepping through the following series of

major actions:

 Decrements the stack pointer by 2 and pushes the flag register on the stack.

 Disables the 8086 INTR interrupt input by clearing the interrupt flag in the flag register.

 Resets the trap flag in the flag register.

 Decrements the stack pointer by 2 and pushes the current code segment register contents on the stack

 Decrements the stack pointer again by 2 and pushes the current instruction pointer contents on the stack.

 The interrupt type number is multiplied by 4 to get the physical location in IVT to fetch the CS and IP of

corresponding ISR

 Processor executes ISR

 The last instruction is IRET, on execution of this the processor gets back IP, CS and FR from stack and

continues with execution of the program.

4. Write an Alp to perform the following.

a) Clear the screen b) Set the cursor at Row=8, Column =10.

c) prompt “There is a message from CMRIT, Enter Y to read it $” . If the user enters ‘Y’ or ‘y’ the

message “Hello, All the best “ appears on the screen. If the user enters any other key then the messge “No

more Messages “ must appear on the screen.

.MODEL SMALL

.STACK 64H

.DATA

MSG1 DB ‘There is a message from CMRIT, Enter Y to read it $’

MSG2 DB ‘Hello, All the best$’

MSG3 DB ‘No more Messages$’

.CODE

MOV AX,@DATA

MOV DS,AX

; CLEAR SCREEN

MOV AL,0

MOV BH,07H

MOV CX,0

MOV DX,184FH

MOV AH,06H

INT 10H

;SET CURSOR AT ROW 8 COLUMN 10

MOV BH,0

MOV DL, 10

MOV DH, 8

MOV AH,02

INT 10H

; PRINT MEASSAGE 1

LEA DX, MSG1

MOV AH, 09

INT 21H

; ACCEPT A CHARACETR

MOV AH,01H

INT 21H

; CHECK WHETHER THE ENTERED CHARACTER IS y OR Y AND PRINT APPROPRIATE

MESSAGE

CMP AL,’y’

JE L1

CMP AL,’Y’

JNE L2

L1: LEA DX, MSG2

JMP L3

L2: LEA DX, MSG3

L3: MOV AH, 09

INT 21H

MOV AH, 4CH

INT 21H

END

5. Write an ALP to scan the string “cMRITcSE” and replace the letter ‘c’ with ‘C’ and display the

corrected string. Write appropriate comments

.MODEL SMALL

.STACK 64H

.DATA

SRC DB ‘cMRITcSE$’

LEN DW (LEN-DATA)

.CODE

MOV AX,@DATA

MOV DS, AX

LEA DI, SRC

MOV CX, LEN

MOV AL,’c’

L1: REPNE SCASB

JE REPLACE

JMP STOP

REPLACE: MOV [DI-1],’C’

CMP CX,0

JNZ L1

STOP: LEA DX, SRC

MOV AH,09H

INT 21H

MOV AH, 4CH

INT 21H

END

7 a. Explain the control word format of 8255 in I/O mode and BSR mode.

8255

The 8255 is a 40-pin DIP chip. It has three separately accessible ports. The ports are each 8-bit, and are

named A, B, and C. The individual ports of the 8255 can be programmed to be input or output, and can be

changed dynamically. In addition, 8255 ports, have handshaking capability, thereby allowing interface with

devices needs handshaking signals, such as printers.

Mode selection of the 8255

While ports A, B, and C are used to input or output data, it is the control register that must be programmed

to select the operation mode of the three ports. The ports of the 8255 can be programmed in any of the

following modes.

1. Mode 0, simple I/O mode. In this mode, any of the ports A, B, CL, and CU can

be programmed as input or output. In this mode, all bits are out or all are in. In

other words, there is no such thing as single-bit control as we have seen in

PO – P3 of the 8051. Since the vast majority of applications involving the 8255

use this simple I/O mode, we will concentrate on this mode in this chapter.

2. Mode 1. In this mode, ports A and B can be used as input or output ports with

handshaking capabilities. Handshaking signals are provided by the bits of port

C.

3. Mode 2. In this mode, port A can be used as a bidirectional I/O port with hand

shaking capabilities whose signals are provided by port C. Port B can be used

either in simple I/O mode or handshaking mode 1.

4. BSR (bit set/reset) mode. In this mode, only the individual bits of port C can

be programmed.

The 8255 chip is programmed in any of the 4 modes mentioned by sending a byte to the control register of

the 8255. We must first find the port addresses assigned to each of ports A, B, C, and the control register.

This is called mapping the I/O port.

Instructions for input and output port transfer

 IN − Used to read a byte from the provided port to the accumulator.

 OUT − Used to send out a byte from the accumulator to the provided port.

Control Word register format:

I/O mode

BSR Mode

Control word if PA=o/p, PB =i/p, PCL=i/p, PCU=o/p

CONTROL WORD: 10000011 = 83H

Control word if PA=i/p, PB =0/p, PC=o/p

CONTROL WORD: 10010000 = 90H

 b.Write an Alp to read from Pb and check the number of ones in a given 8 bit data at PB and display

0FFh on PA if it is even parity else 00h on PA if it is odd parity.

Control word if PA=o/p, PB =i/p, PC=o/p

CONTROL WORD: 10000010 = 82H

.MODEL SMALL

.STACK 100

.DATA

PA EQU 300H

PB EQU 301H

CT EQU 303H

.CODE

MOV AX, @DATA

MOV DS, AX

MOV DX, CT

MOV AL, 82H

OUT DX, AL

MOV DX, PB

IN AL, DX

; check the number of ones

MOV CX,8

MOV BL,00

BACK:SHR AL,1

JNC ZERO

INC BL; Number of ones

ZERO:LOOP BACK

SHR BL,1 ;check number of ones even number or not

JNC DISP

MOV AL,00H

JMP LAST

DISP:MOV AL,0FFH

LAST:MOV DX, PA

OUT DX, AL

MOV AH, 4CH

INT 21H

END

8 a. Differentiate between RISC and CISC processors.

The RISC (Reduced Instruction Set Computer) philosophy concentrates on reducing the complexity of

instructions performed by the hardware because it is easier to provide greater flexibility and intelligence in

software rather than hardware. As a result, a RISC design places greater demands on the compiler. In

contrast, the traditional complex instruction set computer (CISC) relies more on the hardware for instruction

functionality, and consequently the CISC instructions are more complicated

Instructions—RISC processors have a reduced number of instruction classes. These classes provide simple

operations that can each execute in a single cycle. The compiler or programmer synthesizes complicated

operations (for example, a divide operation) by combining several simple instructions. Each instruction is a

fixed length to allow the pipeline to fetch future instructions before decoding the current instruction. In

contrast, in CISC processors the instructions are often of variable size and take many cycles to execute.

Pipelines— The processing of instructions is broken down into smaller units that can be executed in parallel

by pipelines. Ideally the pipeline advances by one step on each cycle for maximum throughput. Instructions

can be decoded in one pipeline stage. There is no need for an instruction to be executed by a mini program

called microcode as on CISC processors.

Registers—RISC machines have a large general-purpose register set. Any register can contain either data or

an address. Registers act as the fast local memory store for all data processing operations. In contrast, CISC

processors have dedicated registers for specific purposes.

Load-store architecture—The processor operates on data held in registers. Separate load and store

instructions transfer data between the register bank and external memory. Memory accesses are costly, so

separating memory accesses from data processing provides an advantage because you can use data items

held in the register bank multiple times without needing multiple memory accesses. In contrast, with a CISC

design the data processing operations can act on memory directly.

Hardware complexity- RISC emphasizes on software complexity while CISC emphasizes on hardware

complexity

 b. Explain the architecture of embedded system hardware with the help of suitable block

diagram.

Embedded systems can control many different devices, from small sensors found on a production line, to the

real-time control systems used on a NASA space probe. All these devices use a combination of software and

hardware components. Each component is chosen for efficiency and, if applicable, is designed for future

extension and expansion.

Embedded System Hardware:

Figure 8.a.1 ARM based embedded device

Figure 8.a.1 shows a typical embedded device based on an ARM core. We can separate the device into four

main hardware components:

1. The ARM processor controls the embedded device. Different versions of the ARM processor are

available to suit the desired operating characteristics. An ARM processor comprises a core (the

execution engine that processes instructions and manipulates data) plus the surrounding components

that interface it with a bus. These components can include memory management and caches.

2. Controllers coordinate important functional blocks of the system. Two commonly found controllers

are interrupt and memory controllers.

3. The peripherals provide all the input-output capability external to the chip and are responsible for the

uniqueness of the embedded device.

4. A bus is used to communicate between different parts of the device.

ARM Bus Technology: embedded devices use an on-chip bus that is internal to the chip and that allows

different peripheral devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus. The ARM processor core is a bus master—a

logical device capable of initiating a data transfer with another device across the same bus. Peripherals tend

to be bus slaves—logical devices capable only of responding to a transfer request from a bus master device.

 AMBA Bus Protocol: The Advanced Microcontroller Bus Architecture (AMBA) has been widely

adopted as the on-chip bus architecture used for ARM processors. The first AMBA buses introduced

were the ARM System Bus (ASB) and the ARM Peripheral Bus (APB). Later ARM introduced

another bus design, called the ARM High Performance Bus (AHB).

 Using AMBA, peripheral designers can reuse the same design on multiple projects. A peripheral can

simply be bolted on to the on-chip bus without having to redesign an interface for each different

processor architecture.

 ASB is a bidirectional bus design.

 APB is used with slower peripherals.

 AHB is based on a centralized multiplexed bus scheme, thus runs at higher clock speeds and

provides higher data through put. AHB bus is used for the high performance peripherals.

Memory:

An embedded system has to have some form of memory to store and execute code. Cost, performance, and

power consumption are the parameters considered while deciding upon specific memory characteristics,

such as hierarchy, width, and type. Like if memory has to run twice as fast to maintain a desired bandwidth,

then the memory power requirement may be higher.

 Hierarchy: Memory can be Cache, Main memory or Secondary memory.

The fastest memory cache is physically located nearer the ARM processor core and the slowest secondary

memory is set further away. Generally the closer memory is to the processor core, the more it costs and the

smaller its capacity. The cache is placed between main memory and the core. It is used to speed up data

transfer between the processor and main memory. The main memory is large and is generally stored in

separate chips. Load and store instructions access the main memory unless the values have been stored in

the cache for fast access. Secondary storage is the largest and slowest form of memory. Hard disk drives and

CD-ROM drives are examples of secondary storage. Many small embedded systems do not require the

performance benefits of a cache.

 Width: The memory width is the number of bits the memory returns on each access—typically 8, 16,

32, or 64 bits. The memory width has a direct effect on the overall performance and cost ratio. If you

have an un-cached system using 32-bit ARM instructions and 16-bit-wide memory chips, then the

processor will have to make two memory fetches per instruction. Each fetch requires two 16-bit loads.

This obviously has the effect of reducing system performance, but the benefit is that 16-bit memory is

less expensive. In contrast, if the core executes 16-bit Thumb instructions, it will achieve better

performance with a 16-bit memory. The higher performance is a result of the core making only a single

fetch to memory to load an instruction. Hence, using Thumb instructions with 16-bit-wide memory

devices provides both improved performance and reduced cost.

 Types: RAM or ROM

o Read only memory (ROM) is the least flexible of all memory types because it

contains an image that is permanently set at production time and cannot be

reprogrammed. ROMs are used in high-volume devices that require no updates or

corrections. Many devices also use a ROM to hold boot code.

o Random Access memory (RAM)- SRAM,DRAM or SDRAM

Peripherals

Embedded systems that interact with the outside world need some form of peripheral device. A peripheral

device performs input and output functions for the chip by connecting to other devices that are off-chip.

All ARM peripherals are memory mapped—the programming interface is a set of memory-addressed

registers. The address of these registers is an offset from a specific peripheral base address.

Controllers are specialized peripherals that implement higher levels of functionality within an embedded

system. Two important types of controllers are memory controllers and interrupt controllers. Memory

controllers connect different types of memory to the processor bus. On power-on a memory controller is

configured in hardware to allow certain memory devices to be active. These memory devices allow the

initialization code to be executed. Some memory devices must be set up by software.

An interrupt controller provides a programmable governing policy that allows software to determine which

peripheral or device can interrupt the processor at any specific time by setting the appropriate bits in the

interrupt controller registers. There are two types of interrupt controller available for the ARM processor:

the standard interrupt controller and the vector interrupt controller (VIC). The standard interrupt controller

sends an interrupt signal to the processor core when an external device requests servicing. It can be

programmed to ignore or mask an individual device or set of devices. The VIC is more powerful than the

standard interrupt controller because it prioritizes interrupts and simplifies the determination of which device

caused the interrupt.

