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IAT2- Solution 

Solution:  

 

 

1. Consider the following set of processes given in table 

Processes Arrival 

Time 

 (m sec) 

Burst 

Time 

(m sec) 

Priority 

P1 0 10 4 

P2 3 5 2 

P3 3 6 6 

P4 5 4 3 

Considering larger number as highest Priority, for Preemptive Priority scheduling & preemptive SJF 

scheduling 
(i) calculate average Waiting time and average Turnaround time  

(ii) Draw a Gantt Chart respectively 



 
 

 

 

2. What is a critical section problem? What requirements should a solution to critical section problem 

satisfy? State Peterson’s solution and indicate how it satisfies the above requirements. 

     Solution:  
• Critical-section is a segment-of-code in which a process may be 

→ changing common variables 
→ updating a table or 
→ writing a file. 

• Each process has a critical-section in which the shared-data is accessed. 
• General structure of a typical process has following (Figure 2.12): 

1) Entry-section 
 Requests permission to enter the critical-section. 
2) Critical-section 
 Mutually exclusive in time i.e. no other process can execute in its critical-section. 
3) Exit-section 
 Follows the critical-section. 



4) Remainder-section 

 
• Problem statement: 

―Ensure that when one process is executing in its critical-section, no other process is 

to be allowed to execute in its critical-section. 
• A solution to the problem must satisfy the following 3 requirements: 

1) Mutual Exclusion: 
 No more than one process can be in critical-section at a given time. 

2) Progress: 
 When no process is in the critical section, any process that requests entry 

into the critical section must be permitted without any delay.. 
3) Bounded Waiting (No starvation):  

 There is an upper bound on the number of times a process enters the 

critical section, while another is waiting. 
• Two approaches used to handle critical-sections: 

1) Preemptive Kernels 
 Allows a process to be preempted while it is running in kernel-mode. 
 More suitable for real-time proframming 

2) Non-preemptive Kernels 
 Does not allow a process running in kernel-mode to be preempted as it is free 

from race conditions on kernel data structures, as only one process is active in the 
kernel at a time. 

 

 

Peterson’s Solution 

• This is a classic software-based solution to the critical-section problem. 
• This is limited to 2 processes. 
• The 2 processes alternate execution between 

→ critical-sections and 
→ remainder-sections. 

• The 2 processes (say i & j)share two globally defined variables: 

‘turn’ – indicates whose turn it is to enter its critical-section. 

(i.e., if turn==i, then process Pi is allowed to execute in its 

critical-section).  

     ‘flag’ – indicates if a process is ready to enter its critical-section. 
(i.e. if flag[i]=true, then Pi is ready to enter its critical-section). 

 The following code shows the structure of process Pi in Peterson’s solution: 
 
 
 
 
 
 
 



 
 
UNLOCK      LOCK 

 

 
 

• To enter the critical-section, 
→ firstly, process Pi sets flag[i] to be true and 
→ then sets turn to the value j. 

• If both processes try to enter at the same time, turn will be set to both i and j at 

roughly the same time. 
• The final value of turn determines which of the 2 processes is allowed to enter its critical-

section first. 
• To prove that this solution is correct, we show that: 

1) Mutual-exclusion is preserved: 
• Observation1: Pi enters the CS only if flag[j]== false or turn ==i. 
• Observation2: If both processes can be executing in their CSs at the same 

time, then flag[i]==flag[j]==true. 
 These two observations imply that Pi and Pj could not have successfully executed 

their while statements at about the same time, since the value of turn can be either i or 

j but cannot be both. Hence, the process which sets ‘turn’ first will execute and Mutual 

Exclusion is preserved. 
2) The progress requirement & The bounded-waiting requirement is met: 

• The process which executes while statement first (say Pi), doesn’t change 
the value of turn. So other process (Say Pj) will enter the CS (Progress) 
after at most one entry (Bounded Waiting) 

 
 

3. Define Semaphores.  Explain dinning philosopher’s problem using Semaphores. 
Solution:  

• A semaphore is a synchronization-tool. 

• It used to control access to shared-variables so that only one process may at any 

point in time change the value of the shared-variable. 
• A semaphore(S) is an integer-variable that is accessed only through 2 atomic-operations: 

1) wait() and 
2) signal(). 

 
 
• wait() is termed P ("to test or decrement” )            signal() is termed V ("to increment"). 

If Process j wants to enter the CS, be nice!!! 

‘turn’ is used to break the tie when both P1 and 

P2 want to enter the CS. 

  ‘turn’ can only be i or j 

(*the process which sets turn last loses the tie*) 



              Definition of wait():           Definition of signal(): 

          
• When one process modifies the semaphore-value, no other process can 

simultaneously modify that same semaphore-value. 
The Dining-Philosophers Problem 

• Problem statement: 
 There are 5 philosophers with 5 chopsticks (semaphores). 
 A philosopher is either eating (with two chopsticks) or thinking. 
 The philosophers share a circular table (Figure 2.21). 
 The table has 

→ a bowl of rice in the center and 
→ 5 single chopsticks. 

 From time to time, a philosopher gets hungry and tries to pick up the 2 chopsticks 

that are closest to her. 
 A philosopher may pick up only one chopstick at a time. 
 Obviously, she cannot pick up a chopstick that is already in the hand of a neighbor. 
 When hungry philosopher has both her chopsticks at the same time, she eats 

without releasing her chopsticks. 
 When she is finished eating, she puts down both of her chopsticks and starts thinking again. 

• Problem objective: 
To allocate several resources among several processes in a deadlock-free & starvation-free manner. 

• Solution: 
 Represent each chopstick with a semaphore (Figure 2.22). 
 A philosopher tries to grab a chopstick by executing a wait() on the semaphore. 
 The philosopher releases her chopsticks by executing the signal() on the semaphores. 
 This solution guarantees that no two neighbors are eating simultaneously. 
 Shared-data 

semaphore chopstick [5]; 

1.   Initialization 

        chopstick [5] = {1,1,1,1,1}. 

 

Figure 2.21 Situation of dining philosophers Figure 2.22 The structure of philosopher 

 

• Disadvantage: 

1) Deadlock may occur if all 5 philosophers become hungry simultaneously and 

grab their left chopstick. When each philosopher tries to grab her right chopstick, she 

will be delayed forever. 
• Three possible remedies to the deadlock problem: 



1) Allow at most 4 philosophers to be sitting simultaneously at the table. 
2) Allow a philosopher to pick up her chopsticks only if both chopsticks are available. 
3) Use an asymmetric solution; i.e. an odd philosopher picks up first her left chopstick and 

then her right chopstick, whereas an even philosopher picks up her right chopstick and then 

her left chopstick. 

 

4. Define Deadlock. List and explain the necessary conditions for a deadlock to occur and methods for 

handling them in detail. 
Solution: 

Deadlocks 

• Deadlock is a situation where a set of processes are blocked because each process is 
→ holding a resource and 
→ waiting for another resource held by some other process. 

• Real life example: 
When 2 trains are coming toward each other on same track and there is only one track, 

none of the trains can move once they are in front of each other. 
• Similar situation occurs in operating systems when there are two or more processes hold some 
resources and wait for resources held by other(s). 

Necessary Conditions 
• There are four conditions that are necessary to achieve deadlock: 

i) Mutual Exclusion 
 At least one resource must be held in a non-sharable mode. 
 i.e., If one process holds a non-sharable resource and if any other process requests 

this resource, then the requesting-process must wait for the resource to be released. 
1) Hold and Wait 
 A process must be simultaneously 

→ holding at least one resource and 
→ waiting to acquire additional resources held by the other process. 

2) No Preemption 

 Resources cannot be preempted. 

 A resource can be released voluntarily by the process holding it. 
3) Circular Wait 
 A set of processes { P0, P1, P2, . . ., PN } must 

exist  

P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held 

by P2 ….and PN is waiting for a resource held by P0. 

 

Methods for Handling Deadlocks: 

• There are three ways of handling deadlocks: 
1) Deadlock prevention or avoidance – Use a protocol to prevent or avoid deadlocks, ensuring that 

the system will never enter a deadlock state. 
2) Deadlock detection and recovery – allow the system to enter a deadlock state, detect it, 

and recover 

3) Ignore the problem all together – Ignore the problem altogether and pretend that 

deadlocks never occur in the system. 

 The third solution is the one used by most operating systems, including UNIX and 

Windows. 
 In order to avoid deadlocks, the system must have additional information about all processes. In 

particular, the system must know what resources a process will or may request in the future. 
 Deadlock detection is fairly straightforward, but deadlock recovery requires either aborting 

processes or preempting resources. 
 If deadlocks are neither prevented nor detected, then when a deadlock occurs the system  



will gradually slow down. 
5. Consider the following snapshot of a system 

 

Using Banker’s Algorithm, answer the following questions  

(i) Find out Need Matrix 

(ii) Is the system in a safe state? 

(iii) When a request from P1 arrives for (1, 0, 1), can the request be granted immediately? 

 
Solution: 
 

 
 

 

 
 

 

 

 

Proce

ss 

Allocation Max. Available 

A B C A B C A B C 

P0 0 0 2 0 0 4 1 0 2 

P1 1 0 0 2 0 1  

P2 1 3 5 1 3 7 

P3 6 3 2 8 4 2 

P4 1 4 3 1 5 7 



6. Explain Deadlock Detection mechanisms for single & multiple instances with neat diagrams 

Solution:  

Deadlock Detection 

• If a system does not use deadlock-prevention or deadlock-avoidance algorithm then a deadlock 

may occur. 
• In this environment, the system must provide 

1) An algorithm to examine the system-state to determine whether a deadlock has occurred. 
2) An algorithm to recover from the deadlock. 

 
Single Instance of Each Resource Type 

• If all the resources have only a single instance, then deadlock detection-algorithm can be 

defined using a wait-for-graph. 
• The wait-for-graph is applicable to only a single instance of a resource type. 
• A wait-for-graph (WAG) is a variation of the resource-allocation-graph. 
• The wait-for-graph can be obtained from the resource-allocation-graph by 

→ removing the resource nodes and 
→ collapsing the appropriate edges. 

 An edge from Pi to Pj implies that process Pi is waiting for process Pj to release a resource 

that Pi needs. 
• An edge Pi → Pj exists if and only if the corresponding graph contains two edges 

1) Pi → Rq and 
2) Rq → Pj. 

• For example: 

Consider resource-allocation-graph shown in Figure 3.6 Corresponding 

wait-for-graph is shown in Figure 3.7. 

 

 

Figure 3.6 Resource-allocation-graph Figure 3.7 Corresponding wait-for-graph. 

 
• A deadlock exists in the system if and only if the wait-for-graph contains a cycle. 
• To detect deadlocks, the system needs to 

→ maintain the wait-for-graph and 
→ periodically execute an algorithm that searches for a cycle in the graph. 

  
Several Instances of a Resource Type 

• The wait-for-graph is applicable to only a single instance of a resource type. 
• Problem: However, the wait-for-graph is not applicable to a multiple instance of a resource type. 
• Solution: The following detection-algorithm can be used for a multiple instance of a resource type. 
• Assumptions: 



Let ‘n’ be the number of processes in 

the system Let ‘m’ be the number of 

resources types. 
• Following data structures are used to implement this algorithm. 

3) Available [m] 
i. This vector indicates the no. of available resources of each type. 

ii. If Available[j]=k, then k instances of resource type Rj is available. 
4) Allocation [n][m] 

• This matrix indicates no. of resources currently allocated to each process. 
• If Allocation[i,j]=k, then Pi is currently allocated k instances of Rj. 

5) Request [n][m] 
i. This matrix indicates the current request of each process. 

ii. If Request [i, j] = k, then process Pi is requesting k more instances of resource type 

Rj. 

 

This algorithm requires an order mxn
2 
operations to detect whether the system is in a deadlocked 

state 

 

 
 

 

7. With a neat diagram, explain how hardware supports memory allocation and protection of processes 

Solution:  
Contiguous Memory Allocation 

• Memory is usually divided into 2 partitions: 
→ One for the resident OS. 
→ One for the user-processes. 

• Each process is contained in a single contiguous section of memory. 

 
Memory Mapping & Protection 

• Memory-protection means 
→ protecting OS from user-process and 
→ protecting user-processes from one another. 

• Memory-protection is done using 
→ Relocation-register: contains the value of the smallest physical-address. 

Step 1: 

Let Work and Finish be vectors of length m and n respectively. 
a) Initialize Work = Available 
b) For i=0,1,2… ..... n 

if Allocation(i) != 0 
then 

Finish[i] = false; 
else 

Finish[i] = true; 
Step 2: 

Find an index(i) such that both 
a) Finish[i] = false 

b) Request(i) <= Work. 
If no such i exist, goto step 4. 

Step 3: 

Set: 

Work = Work + Allocation(i) 
Finish[i] = true 

Go to step 2. 

Step 4: 

If Finish[i] = false for some i where 0 ≤ i < n, then the system is in a deadlock state. 
Moreover, if Finish[i] == false, then process Pi is deadlocked. 



→ Limit-register: contains the range of logical-addresses. 
• Each logical-address must be less than the limit-register. 
• The MMU maps the logical-address dynamically by adding the value in the relocation-register. This 

mapped-address is sent to memory (Figure 3.13). 
• When the CPU scheduler selects a process for execution, the dispatcher loads the relocation and 
limit-registers with the correct values. 
• Because every address generated by the CPU is checked against these registers, we can protect the 

OS from the running-process. 
• The relocation-register scheme provides an effective way to allow the OS size to change dynamically. 
• Transient OS code: Code that comes & goes as needed to save memory-space and overhead for 

unnecessary swapping. 

 
Figure 3.13 Hardware support for relocation and limit-registers 

 

  
Memory Allocation 

• Two types of memory partitioning are: 1) Fixed-sized partitioning and 

2) Variable-sized partitioning 
1) Fixed-sized Partitioning 
 The memory is divided into fixed-sized partitions. 
 Each partition may contain exactly one process. 
 The degree of multiprogramming is bound by the number of partitions. 
 When a partition is free, a process is 

→ selected from the input queue and 
→ loaded into the free partition. 

 When the process terminates, the partition becomes available for another process. 
2) Variable-sized Partitioning 
 The OS keeps a table indicating 

→ which parts of memory are available and 
→ which parts are occupied. 

 A hole is a block of available memory. 
 Normally, memory contains a set of holes of various sizes. 
 Initially, all memory is 

→ available for user-processes and 
→ considered one large hole. 

 When a process arrives, the process is allocated memory from a large hole. 
 If we find the hole, we 

→ allocate only as much memory as is needed and 
→ keep the remaining memory available to satisfy future requests. 

• Three strategies used to select a free hole from the set of available holes. 
1) First Fit 
 Allocate the first hole that is big enough. 
 Searching can start either 

→ at the beginning of the set of holes or 
→ at the location where the previous first-fit search ended. 

2) Best Fit 



 Allocate the smallest hole that is big enough. 
 We must search the entire list, unless the list is ordered by size. 
 This strategy produces the smallest leftover hole. 
3) Worst Fit 
 Allocate the largest hole. 
 Again, we must search the entire list, unless it is sorted by size. 
 This strategy produces the largest leftover hole. 

• First-fit and best fit are better than worst fit in terms of decreasing time and storage utilization. 

 


