CMR

&
INSTITUTE OF g §\mm
TECHNOLOGY USN | | | | ‘ ‘ ‘ ‘ | Pae—
Third Internal Test
Sub: File Structures Code: 151562
Date: 13/05/2019 Duration: | 90 mins | Max Marks: | 50 Sem: | VI | Branch: ISEA&B
Answer Any FIVE FULL Questions
OBE
Marks e RBT
1 (a) What is indexed sequential access? Explain the block splitting and merging due [10] CO3 | L1
to insertion and deletion in sequence set.

Ans * Inindexed and tree structure based access user had to choose between

viewing a file from an indexed point of view or from a sequential point of
view. In Indexed sequential access we are looking for a single
organizational method that provides both of these views simultaneously.
Sequence set:
* Asequence set is a set of records in physical key order which is such that it
stays ordered as records are added and deleted.

+ Since sorting and resorting the entire sequence set as records are added
and deleted is expensive, we look at other strategies. In particular, we
look at a way to localize the changes.

» The idea is to use blocks that can be read into memory and rearranged
there quickly. Like in B-Trees, blocks can be split, merged or their
records re-distributed as necessary.

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Block 4

Block 1

Block 2

Block 3

Block 4

ADAMS . .. BAIRD ... BIXBY ... BOONE . ..

Pl GYNUM ... CARSON ... COLE ... DAVIS. ..
9! DENVER ..., ELLIS . ..
(a)
ADAMS . .. BAIRD . .. BIXBY ... BOONE. ..
“—»! LYNUM ... CARSON ... CARTER . ..
DENVER . .. ELLIS . .
COLE...DAVIS...
—
(b)
ADAMS . . . BAIRD . . . BIXBY . . . BOONE . .
| BYNUM . .. CARSON ... CARTER . ..
e~ Availa
for rel
L—p| COLE...DENVER ... ELLIS . ..
{c)

Figure 10.1 Block splitting and merging due to insertions and deletions in
the sequence set. (a) Initial blocked sequence set. (5) Sequence set after
insertion of CARTER record—block 2 splits, and the contents are divided
between blocks 2 and 4.{c) Sequence set after deletion of DAVIS record—
block 4 is less than half full, so it is concatenated with block 3.

2 (a) What are the properties of B-Tree? Explain deletion, merging and redistribution
of elements on B-Tree with suitable example.

[10]

CO3

L2

Ans For a Btree of order m, Btree has the following properties.

Every page has a maximum of m children.

The root has a minimum of 2 children (unless it is a leaf).
All of the leaves are on the same level

vk wN e

The leaf level forms a complete, ordered index of the associated data file.

The rules for deleting a key k from a node n in a B-tree are as follows:

1. If n has more than the minimum number of keys and the k is not the
largest in n, simply delete k from n.

2. If n has more than the minimum number of keys and the & is the
largest in n, delete k and modify the higher level indexes to reflect the
new largest key in n.

3. If n has exactly the minimum number of keys and one of the siblings
of n has few enough keys, merge n ‘with its sibling and delete a key
from the parent node.

4, If n has exactly the minimum number of keys and one of the siblings
of n has extra keys, redistribute by moving some keys from a sibling to
n, and modify the higher level indexes to reflect the new largest keys in
the affected nodes.
Example for deletion, merging and redistribution.

Every page, except for the root and the leaves, has a minimum of m/2 children

3 (a) What is hashing? Write a simple hashing algorithm and explain with an example [10] CO4

Ans ¢ Key driven file access should be O(1) - that is, the time to access a

record should be a constant which does not vary with the size of the

dataset.

¢ Indexing can be regarded as a table driven function which translates

a key to a numeric location.
¢ Hashing can be regarded as a computation driven function which
translates a key to a numeric location.
hashing

The transformation of a search key into a number by means of
mathematical calculations.

Example of any simple hashing calculated using ASCII values of characters in

key.

4 (a) Explain B-Tree methods for search() and findleaf() with necessary C++ code

[10] COos3

L2

L3

Ans :
template <class keyType>
int BTree<keyType>::Search (const keyType key, const int COCRAAL)

BTreeNode<keyType> . * leafNode;
leafNode = FindLeaf (keyl!:
return leafNcde -» Search (key, recdddr);

}

template <class keyType>
BTreeNode<keyType> * BTree<keyType>::Findleaf (const keyType key)
// load a branch into memory down to the leaf with key
{

int recAddr, level;

for (level = 1; level < Height; levelss]

{) .

ecAddr = Nodes[level-l]->Searchlkey,-1,0);//inexact search
Nadas[le"elf=?e:ch(recAdnr)

]

return Nodes{level-1]:
)

Figure 9.18 Method BTree::Search and BTree: undLeaf

The search operation on a b-tree is analogous to a search on a blnary tree. Instead
of choosing between a left and a right child as in a binary tree, a b-tree search
must make an n-way choice. The correct child is chosen by performing a linear
search of the values in the node using find leaf function as above. After finding
the value greater than or equal to the desired value, the child pointer to the
immediate left of that value is followed. If all values are less than the desired
value, the rightmost child pointer is followed. Of course, the search can be
terminated as soon as the desired node is found. Since the running time of the
search operation depends upon the height of the tree, B-Tree-Search is O(log n).

5 (a) Define collision. Explain the different collision resolution techniques used in
hashing.

Ans Collisions
synonyms
Keys which hash to the same value.

CO4

L2

collision
An attempt to store a record at an address which does not have sufficient room
ie already occupied by another record which is a synonym.

Double Hashing: A method of open addressing for a hash table in which a
collision is resolved by searching the table for an empty place at intervals given
by a different hash function, thus minimizing clustering.

Linear probing collision resolution leads to clusters in the table, because if two
keys collide, the next position probed will be the same for both of them.

The idea of double hashing: Make the offset to the next position probed depend
on the key value, so it can be different for different keys

Need to introduce a second hash function H 2 (K), which is used as the offset in
the probe sequence.

For a hash table of size M, H 2 (K) should have values in the range 1 through
M-1; if M is prime, one common choice is H2(K) =1 + ((K/M) mod (M-1))

Example:

k (kev) ADAMS | JONES [MORRIS [SMITH
fi (k) (home address) O 0 0 5
halk) = ¢ 2 3 | 3

Hashed file using double hashing: ADAMS
6 | JONES
S [SMITH
9
10 | MORRIS

Chained Progressive overflow:

It is similar to progressive overflow except that synonyms are linked together
with pointers. The objective is to reduce the search length for records within
clusters.

Progressive Overflow Chained Progressive Overflow

data data |next
20 | ADANIS 20| ADANIS | 22
21 | BATES 21| BATES | 23
22| COLES 22| COLES | 25
23| DEAN 23] DEAN | -1
24| EVANS 21| ENVANS | -1
25| FLINT 25| FLINT | -1

6 (a) Suppose that 1000 addresses are allocated to hold 800 records in a randomly CO5
hashed file and that each address can hold one record. Compute the following
values:

l.
Il.
[l
V.
V.

VI.

Ans

The packing density

The expected number of addresses with no records assigned to them.

The expected number of addresses with exactly one record assigned. [10]
The expected number of addresses with one record or one or more synonyms

The expected number of overflow records assuming that only one record can

be assigned to each home addresses

Percentage of overflow records

i) Packing density:

800/1000=0.8

ii) P(0)=(0.8)° X e®®/01= .449*1000=449
iii) P(1)=(0.8)* X e'®8)/11=.313*1000=313
iv) P(2)=(0.8)? X e'*8)/21=,095*1000=95

P(3)=(0.8)* X e'*8)/31=,038*1000=38

P(4)= (0.8)* X e'*8)/41=0.007*1000=7

P(5)= (0.8)° X e'*®)/51=0.001*1000=1

address with one or more synonyms=95+38+7+1=141
v) (95*1)+(38*2)+(3*7)+(1*4)=196

7 (a) With a neat diagram, explain simple prefix B+ Tree and its maintenance 10 ©©°

Ans:

Index /
sel

B8O CAM :
l F l FOLKS l

I
£ 1N £

N 4 =

A\
ADAMS-RERNE BOLEN-CAGE c.wv-mvrrox) EMBRY-EVANS > I'AUEF!-FOLK> FOLES-GADDIS
/ £ /
! 2 5 1

5 6

Figure 10.7 A B-tree index set for the sequence set, forming a simple prefix B* tree,

Btree indexset taken together with sequence set forms a file structure called a
simple prefix B+ tree. The modifier simple prefix indicates that the index set
contains shortest separators or prefixes of the keys rather than copies of the actual

key

Maintenance:

1.

Changes Localized to Single Blocks in the Sequence Set

L3

L2

Additions, deletions, and updates in the sequence set which affect only a single
block do not affect the index set.

lTIFOLK’il

lDD

LN AN

ADAMS-BERNE BOLZNnCﬂ CAMP-DUTTON ERVIN-EVANS > FABER-FOLK FROST-GADDIS

T 7 ERR 7 7
1 2 3 4 5

6

Figure 10.8 The deletion of the EMBRY and FOLKS records from the sequence set leaves
the index set unchanged.

2. Changes involving multiple blocks in the sequence set

When addition to the sequence set results in split in the sequence set,
deletion in sequence set which results in merger, or changes in sequence set
resulting in redistribution requires involvement of more than one block set
and corresponding changes in the index set as well.

/7[]\
| AY CAM l ¥ | FOLKS 1

A A NATRN

ADAMS—A\‘!R> AVERS-BERNE) SOLEN-CAGE ICAMP-DUI'ION ERVIN-EVANS | FABER-FOLX } FROST-GADDIS

7 7 / / / /
1 7 2 3 4 5 (]

Figure 10.9 An insertion into block 1 causes a split and the consequent addition of
block 7.The addition of a block in the segquence set requires a new separator in the index
set.insertion of the AY separator into the node containing B0 and CAM causes a node
<nlit in the index set B-tree and consequent promotion of BO to the root.

AY IOI]rlm

\ \ /\ \ \ \
ADAME-AVERY) AVERS-RERNE aamm-oun’ox ERVINCEVANS rum-mu) FROST-GADDIS
7

Z e —7 —7
: ! 2 4 5 &

;:gure 10.1C A deletion lrorn_ black 2 causes underflow and the conseéquent merging of
oc‘ks 2and 3. After the merging, block 3 is no longer needed and can be placed on an
avall list. Consequently, the separator CAM is na longer nesded. Removing CAM from jts

r:de I the index set forces a merging of index set nodes, bringing BO back down from
he root.

8 (a) With a suitable diagram, explain the internal structure of index set blocks.

Ans

Separator count
I— Total length of separators

11128} AsBaBroCChCraDeleEdiEcrFuFle (D0 02 04 07 08 10 15 17 20 23 25 | BOD B01 BOY BOS B04 BOS BOG ROT BOS BOY B10 B

I‘—— Separators ——-’o— Index to sepmtors—o{o———- Relative block numbers

Figure 10.12 Structure of an index set block.

Explain each section of the index set block.

[10]

CO3

L1

