LB VERRS 5

& »
&
& .
& \\
&
g
2
. I
* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment III — March 2019
Scheme and Solutions
Sub: | Object Oriented Concepts COS(;J; 17CS42 |Branch: | ISE
Date: | 13-5-2019 |Duration: | 90 min’s Max 50 Sem / 4 OBE
Marks: Sec:

Q. 1 a) State and explain the important features of Object Oriented Programming paradigm.

Encapsulation:

Encapsulation is an object-oriented programming concept that binds together
the data and functions that manipulate the data, and that keeps both safe from
outside interference and misuse

Encapsulation means that the internal representation of an object is generally
hidden from view outside of the object’s definition. Typically, only the
object’s own methods can directly inspect or manipulate its fields.

Data abstraction :

Data abstraction refers to providing only essential information to the outside
world and hiding their background details, i.e., to represent the needed
information in program without presenting the details.

Data abstraction is a programming (and design) technique that relies on the
separation of interface and implementation.

Let's take one real life example of a TV, which you can turn on and off,
change the channel, adjust the volume, and add external components such as
speakers, VCRs, and DVD players, BUT you do not know its internal details,
that is, you do not know how it receives signals over the air or through a cable,
how it translates them, and finally displays them on the screen.

Inheritance
Inheritance is a way to reuse code of existing objects, or to establish a subtype
from an existing object, or both, depending upon programming language
support.

In classical inheritance where objects are defined by classes, classes can

inherit attributes and behavior from pre-existing classes called base classes,
superclasses, parent classes or ancestor classes.

The resulting classes are known as derived classes, subclasses or child classes

Polymorphism:

Polymorphism means one name, many forms. Polymorphism manifests itself
by having multiple methods all with the same name, but slightly different
functionality.

There are 2 basic types of polymorphism.

Overridding, also called run-time polymorphism. For method overloading,
the compiler determines which method will be executed, and this decision is
made when the code gets compiled.

Overloading, which is referred to as compile-time polymorphism. Method
will be used for method overriding is determined at runtime based on the
dynamic type of an object.

Q.1 b) Write a C++ program to count the number of objects created

finclude <icstream>
using namespace std;

class Counter

{

private:
/istatic data memker as count
static int count;

public:
//default constructor
Countexr ()
{ count++; 1}
//static member functicn
static woid Print ()
{
cout<<"'nTotal chjects are: "<<count;

1

i

/fcount initialization with O

int Counter :: count = 0;

int main()

Counter CBl;
OBl.Print () ;

Counter 0OBZ;
CBZ.Print () ;

Counter COB23;
CB3.Print i) ;

return U;

Output

Totzl objscts ars:

Totzl obijscts are:

[ES T A Y S

Totzl obijscts are:
Q. 2 a) Explain function prototyping with example

Function prototyping is necessary in C++. A prototype describes the function’s interface to
the compiler. It tells the compiler the return type of the function as well as the number, type,
and sequence of its formal arguments.

The general syntax of function prototype is as follows:

return_type function_name(argument_list);

For example,

int add(int, int);

This prototype indicates that the add() function returns a value of integer type and takes two
parameters both of integer type.

Since a function prototype is also a statement, a semicolon must follow it.

Listing 1.22 Function prototyping

/*Beginning of funcProto.cpp*/
#include<iostream.h>
int add(int,int); //function prototype

void main()

{
int x,vy,z;
cout<<“Enter a number: *;
cin»>x;
cout<<“Enter ancther number: *;
cin>>y;
z=add(x,y); //function call
cout<<z<<endl;

}
int add(int a,int b) J/function definition

{

}
/*End of funcProto.cpp*/

return (a+b);

Output

Enter a number: 10<enter=

Enter another number: 20<enter=
30

Q. 2 b) How the namespace helps in preventing pollution of global namespace? Explain with example.

2.5 Namespaces

Namespaces enable the C++ programmer to prevent pollution of the global namespace that
leads fo name clashes.

The temm “global namespace” refers to the entire source code. It also includes all the directly
and indirectly included header files. By default, the name of each class 1s visible in the entire
source code, that 1s, in the global namespace. This can lead to problems.

How can this problem be overcome’ How can we cnsure that an application 1s able to
use both definitions of class A simultancously? Enclosing the two definitions of the class in
separate namespaces overcomes this problem.

/*Beginning of Al.h*/
namespace Al /fbeginning of 2 namespace Al

{

class A

{
1s

/*end of A1.h*/

/fend of a namesparce A1l

/*Beginning of A2.h*/

namespace A2 //beginning of a namespace A2
{

class A

{

IE
} /fend of a namespace A2

Listing 2.44 Enclosing classes in namespaces prevents pollution of the global
namespace

[*Beginning of multipefez.cpp*/
#include™al.h™

#include™A2 . h™

void main()

{
Al::A ADbJ1; //0K: AObj1 is an object of the class
J/defined 1n Al.h
A2::A ADbG2; J/0K: A0bj2 1s an object of the class
//defined in A2.h
}

J*End of multiDefe2.cpp™/

Q. 3 a) List out difference between procedure oriented program and object oriented program.

Procedure
Oriented
Programming

Divided Into

In POP.Importance is not given to
Importance data but to functions as well as
sequence of actions to be done.

Approach POP follows Top Down approach.

POP does not have any access
specifier.

Access Specifiers

Data Moving

Expansion

Data Access

Data Hiding

Overloading

Examples

In POP, Data can move freely from
function to function in the system.

Object Oriented Programming

To add new data and function in POP
is not so easy.

In POP, Most function uses Global
data for sharing that can be accessed
freely from function to function in the
system.

POP does not have any proper way
for hiding data so it is less secure.

In POP, Overloading is not possible.

Example of POP are : C, VB,
FORTRAN, Pascal.

Q. 3b) Explain function overloading with example

In POP, program is divided into small In OOP, program is divided into parts
parts called functions. called objects.

In OOP, Importance is given to the
data rather than procedures or
functions because it works as a real

world.
OOP follows Bottom Up approach.

OOP has access specifiers named
Public, Private, Protected, etc.

In OOP, objects can move and
communicate with each other through
member functions.

OOP provides an easy way to add
new data and function.

In OOP, data can not move easily
from function to function,it can be
kept public or private so we can
control the access of data.

OOP provides Data Hiding so
provides more security.

In OOP, overloading is possible in
the form of Function Overloading
and Operator Overloading.

Example of OOP are : C++, JAVA,
VB.NET, C#.NET.

C++ allows two or more functions to have the same name. For this, however, they
must have different signatures. Signature of a function means the number, type, and
sequence of formal arguments of the function. In order to distinguish amongst the
functions with the same name, the compiler expects their signatures to be different.
Depending upon the type of parameters that are passed to the function call, the
compiler decides which of the available will be invoked.

Listing 1.24 Function overloading

/*Beginning of funcOverload.cpp®/
#includeciostream. h>

int add(int,int); //first prototype
int add(int,int,int); //second prototype

void main()

{
int x,v;
¥=add(16,20); //matches first prototype
y=add(3e,48,58); J/matches second prototype
cout<<x<<endl<cy<<endl;

}
int add(int a,int b)
{

returniath);

}

int add(int a,int b,int <)

{

return{a+h+c);

}
/*end of funcOverload.cpp*/

Output
30
120

Q. 4 a) What is constructor? List different types of constructors and explain default constructor &

destructor with example

A constructor is a special type of member function that initialises an object automatically
when it is created.

Compiler identifies a given member function is a constructor by its name and the return
type.

Constructor has the same name as that of the class and it does not have any return type. Also, the
constructor is always public

Types of constructors

RN

Zero argument Constructor/default constructor
Parameterized constructor

Copy constructor

Explicit Constructor

Destructor is a special member function that works just opposite to
constructor, unlike constructors that are used for initializing an object,
destructors destroy (or delete) the object.

6.

Example

#include <iostream>
using namespace std:
. class HelloWorld{

9. public:

10. // default Constructor

11. HelloWorld(){

12. cout<<"Constructor is called"<<endl;
13. |

14. //Destructor

15. ~HelloWorld(){

16. cout<<"Destructor 1s called" <<endl;
17. }

18. //Member function

19. void display(){

20, cout<<"Hello World!"<<endl;
21. }

22.};

23.int main(){

24. //Object created

25. HelloWorld oby;

26. //Member function called

27. obj.display():

28. return O

29.}

Q. 4 b) Explain how one can bridge two classes using friend function. Write C++ program to find the sum
of two numbers using bridge friend function add()

Friends as bridges

Friend functions can be used as bridges between two classes.
Suppose there are two unrelated classes whose private data members need a simultaneous
update through a common function. This function should be declared as a friend to both the
1 b

o~ ~ o

Example 2: Addition of members of two different classes using friend Function //Bridge
#include <iocstream>
using namespace std;

// forward declaration
claszs B;
class B
private:
int numi;
public:
B(): numi {12} { }

// friend function declaraticn
friend int addiz, B);

b

clasas B |

private:

int numB;
public:

B{): numB(1l) { }

¥ friend function declaration
friend int add(z , B);

bi

// Functicon addi() is the friend function of classes L and B
// that accesses the member wvariakles numi and numB
int add(Z cbjectk, B cbhjectB)
{
return (objecth.numlk + objectB.numB) ;

}

int main()

{

L objsctk;

B ocbjsctB;

cout<<"3um: "<< add(ocbjsctk, ckhjectB);
return 0;

Output

Q. 5a) Write the C++ program to get employee details (empno, ename, bsalary (initialized to 1000 by
constructor) and allowance) of employee class through keyboard using the method getdata() and
display them using method dispdata() on the console in the format empno, ename, bsalary, allowance

finclude<icstream.h>

class Employes

{
int empno;
char snams[23];
long ksalary;
int allowance;

public:
vold GetDatal) /f8tatement 1 : Defining GetDatal)

“n\tEnter Employes Id : ";

-Fempno;

cout<<"“n\tEnter Employes MNams : E

cinFrenames;

Ellowance : ";

9]
=

8]

void dispdata() ff3tatement 2 : Defining PutDatal()
{
cou “ninEmployes Numbsr : "<<empno;
cout<<"'nEmployese Name : "<<enams;
couts “nEmploy lowance @ "<<allownace;
cout “nEmployes v 1 "<<kalary;
}
bi
void main ()
{
Employess E; //3tatement 3 : Creating Chkject
E.GetDatal); //3tatement 4 : Calling GetDatal)
E.dispdatal(); //3tatement 5 : Calling PutData)

Q. 6 a) Write the advantages of Swing over AWT

« Swing provides both additional components and added functionality to AWT-
replacement components

« Swing components can change their appearance based on the current "look and feel”
library that's being used. You can use the same look and feel as the platform you're on, or
use a different look and feel

« Swing components follow the Model-View-Controller paradigm (MVC), and thus can
provide a much more tlexible UL

« Swing provides "extras" for components, such as:

Icons on many components

Decorative borders for components

Tooltips for components

« Swing components are lightweight (less resource intensive than AWT)

« Swing provides built-in double buftering

« Swing provides paint debugging support for when you build your own components

[a]

[a]

(8]

Q. 6b) Explain with the syntax following
i) JLabel i) JTextField iii) JCheckBox

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display a
single line of read only text. The text can be changed by an application but a user cannot edit it
directly. It inherits JComponent class.

Constructor Description
JLabel() Creates a JLabel instance with no image and with an empty string for the title.
JLabel(String s) Creates a JLabel instance with the specified text.
JLabel(Icon i) Creates a JLabel instance with the specified image.

Syntax:

impart javax.swing.*;

JLabel 11,12;

I1=new JLabel("First Label.");
I12=new JLahel("Second Label.");

(T2 oo ot O]

First Label.
¥
Second Label. ¥
¥
Java JTextField

The object of a JTextField class is a text component that allows the editing of a single line text. It
inherits JTextComponent class.

Commonly used Constructors:

Constructor Description
ITextField() Creates a new TextField
ITextField(String text) Creates a new TextField initialized with the specified text.
ITextField(String text, int Creates a new TextField initialized with the specified text and
columns) columns.

N Creates a new empty TextField with the specified number of
JTextField(int columns) |
columns,

Syntax:

JTextField t1,12;
tl=new JTextField("Welcome to Javapoint™);
t2=new JTextField("AWT Tutorial");

4] TextField Example » a

|"."-'E|I3l'.lm& o Javatpoint. |

|AWT Tutoris! |

Java JButton

The JButton class is used to create a labeled button that has platform independent
implementation. The application result in some action when the button is pushed. It inherits
AbstractButton class.

Constructor Description
JButton() [t creates a button with no text and icon.
JButton(String s) It creates a button with the specified text.
. It creates a button with the specified icon
JButton(Icon 1) object pee 2

Syntax
JButton b=new JButton("Click Here");

g
:
P

Java JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off
(false). Clicking on a CheckBox changes its state from "on" to "oft" or from "off" to "on ",

Constructor Description
JICheckBox() Cre.ates an initially unselected check box button with no text,
no icon.
JChechBox(String s) Creates an initially unselected check box with text.
JCheckBox(String text, boolean Creates a check box with text and specifies whether or not it
selected) is initially selected.

Creates a check box where properties are taken from the

JCheckBox(Action a) Action gipplied

Syntax

ICheckBox checkBox1 = new JCheckBox("C++");
ICheckBox checkBox2 = new JCheckBox("lava", true);

2] CheckBox Exampie N =

[v] C++ [

V] Java

Q. 7 a) Create a swing Applet that has two buttons named beta and gamma. When either of the buttons
pressed, it should show “beta pressed” and “gamma was pressed” respectively

B an Event Example E |‘_n!|‘§

Alpha I Bala

Mpha was presael,

Jf B simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awtb.event.*;

YE
This HTML can be used to launch the applet:

<ockject code="MySwinghpplet® width=220 height=090=
=/ckbject>
*f

public class MySwinghpplet extends JApplet {
JButteon jhtnAlpha;
JButten jbtnBeta;

JLabel jlab;

f// Initialize the applst.
public veoid init () {

try {
SwingUtilities.invokeAndWait (new Runnable () {
public wold run{) {
makeGUI(); // initiali=ze the GUI

}
1
} catch(Bxception exc) |
System.out.println{"Can't create kecause of "+ exc);

}
}

// This applet does not need teo override start(), stopl),
Jf or deatroy() .

ff Bet up and initialize the GUI.
private void makeGUI(} |

Jf 8et the applet to use flow layout.
setLayvout (new FlowLayeut{});

JF Make two buttons.
jbtnAlpha = new JButten ("Alpha") ;
jbtnBeta = new JButten ("Beta");

/f Bdd actieon listener for Alpha.
jbtnAlpha.addhictionlistener (new Actionlistener()
public void actionPerformed{ActionBEvent le) |

jlak.zetText ("Alpha was pressed.");

}
by

J/ Add action listener for Beta.
jbtnBeta.addictionlistensy (new ActionlListensr () |
public void actionPerformed(ActionEvent le) |

jlak.setText ("Beta was pressed.");

}
H i

// Add the buttons to the content pane.
add (jbtnAlpha) ;
add (jbtnBetal ;

Jf Create a text-based lakel.
jlak = new JLabel ("Press a button.");

/4 Bdd the lakel to the content pane.
addijlab) ;

