USN					

Internal Assessment Test III- May 2019

Sub:	Design and A	analysis of A		1 Assessment	1050	Sub Code:	17CS43	Branc	ch: ISE	-Regula	ır
Date:	14/05/2019	14/05/2019 Duration: 90 mins Max Marks: 50 Sem / Sec: IV						IV		OBE	
		<u> </u>	Inswer any FI	VE FULL Quest	ions				MARKS	СО	RBT
1	What is Dynar Warshall's Alg		ming? Compu	ite the transitive	closu	re of the grap	h given below u		[10]	CO4, CO1	L3
2(a)	item We	owing instar	ue 2 0 0 0	ack problem us	ing D	ynamic Prog	ramming. Knap	osack	[06]	CO4, CO1	L3
2 (b)	Write the algo	rithm for Kna	apsack problem	m with Dynamic	Prog	ramming			[04]	CO4	L2
3	Explain multi	stage graphs	with example	. Write multistag	ge gra	ph algorithm t	to forward appro	oach	[10]	CO5, CO4	L3
4(a)	Explain the co	ncept of Bac	ktracking and	Branch and Bou	nd				[04]	CO4	L2
4(b)	What is N-Queen's Problem? Illustrate 4-Queens problem using Backtracking and obtain the solution.						the	[06]	CO5	L1	
5(a)	Solve subset sum problem for the following example S= {3, 5, 6, 7} and d=15. Construct a state space tree.						state	[05]	CO5	L3	
5(b)	Write algorithm for Graph Coloring problem							[05]	CO4	L2	
6	Solve and find the algorithm to		path between	each pair of ver	rtices	for the graph	given below. V	Vrite	[10]	CO1, CO4	L3
7	Solve the job a	Job1 9 6 5 1 7		ob3 Job4 7 8 3 7 1 8 9 4	btain	the optimal so	olution		[10]	CO5	L3
8	Explain LC br	anch and bou	nd and FIFO	branch and boun	d.				[10]	CO4	L2