1. A What is Dynamic Programming? Compute the transitive closure of the graph given below using Warshall's Algorithm

Dynamic progra	amming.			14 14 PA
Dynamic progra that can be problem can	mied when	the solu	tron to	Chi
of decision	ns.	is a vesuu	5+ 3ec	mence.
- wecurring	polen	weaks down	into.	3.75
odernbed	ed when is	solution can	be recu	rstvely
-> Another	important fea	ture of dy	namic p	opamming
subproblems	s gre retain	ed or store	d so tha	t they
Same p	oblem.			
Basic Idea:	ld awso du	e-e Spitzish	a July	c Rena
Optimal sub	structure: 0	ptimal solu	tron to 1	noblem.
consists of	optimal &	plutien to	sub prob	lems
Overlapping	supproblems:	Few Sub	problems	ند
total, ma	un remassion	g instances	of ead	2
It is solved	by buildie	g table o	f solved	8//-
supproblems	that c	ive wed t	6 solve	larger
			14-4-)	/
	11/2		0. 1/	
			The second secon	

	1	2	3	4
1	0	- 1	0	0
2	0	0	0	1
3	0	1	0	0
4	0	0	1	_

One reflects the existence of path. Boxed you and column, are used to get: R(1).

onels reflect the existence of path with informediate vertices numbered.

not higher than 1.

Boxed now & column are used to get . R (2).

Since (1,2)=1 and (2,4)=1:(14)=1.

Since (3,2)=1 and (2,4)=1:(3,4)=1.

Boxed row and column are used to get R(3).

Since (413)=12 (312)=1 : (412)=1 Since (413)=1 &(4)=1 : (414)=1. Boxed row and column are used to get R(4).

	_	1	2.	3	4
R(4)	1	0	1	ı	1
	2	0	1	1	1
	3	0.	1	1	1
	4	0	1	,	1

Since (14)=1 $\downarrow (413)=1$ \therefore (13)=1Since (214)=1 $\downarrow (413)=1$ \therefore (213)=1Since (214)=1 $\downarrow (413)=1$ \therefore (213)=1Since (314)=1 $\downarrow (413)=1$ \therefore (313)=1Fransitive closure.

2. A) Solve the following instance of Knapsack problem using Dynamic Programming. Knapsack capacity is 5.

W= knap sack capacity = 5.

Initial conditions.

$$V[0]=0$$
 for $J\neq 0$ and $V[1]=0$ for $J\neq 0$ and $V[1]=0$ for $J\neq 0$ and $V=3$ for $J\neq 0$ and $V=3$ for $J\neq 0$ and $V=3$ for $J\neq 0$ for $J\neq 0$ and $V=3$ for $J\neq 0$ f

$$V[21] = \max \{ V[11], V_2 + V[1,0] \}$$

$$= 10$$

$$V[212] = V[112] = 12.$$

$$V[213] = 22.$$

$$V[214] = 22$$

$$V[215] = 22.$$

$$V[31] = 10$$

$$V[312] = 12.$$

$$V[313] = 22$$

$$V[314] = 30$$

$$V[417] = V[317] = 10$$

$$V[412] = \max \{ V[312], V_4 + V[310] \}$$

$$= \max \{ 12, 15 + 0 \}$$

$$= 15$$

$$V[413] = 25$$

$$V[414] = 30$$

$$V[415] = 37.$$

2. B) Write the algorithm for Knapsack problem with Dynamic Programming

Algorithm: knapsack, (W, 12).
// compute the maximum
dynamic programming
1 toput: Capacity w , no of items a, weight
C NOTE OF ILL HOUSE
11 output: Manimum profit i.e V[n,w].
for j < otow do
V[0]J=0
for i < 1 to n do
V[i,0]=0
for i ← I to n. do
for j < 1 to w do.
modifi wi <= j
if v;+V[i-1,j-wi]>V[i-1,j]
V[i,i] + V[i-1,i-wi]
else.
V[i,j] ← V[i-1,j]
else service service
V[i,i] ~ V[i-1,i]

3) Solve and obtain the optimal Binary Search Tree from data given below for four keys

Key	A	В	С	D
Probability	0.1	0.2	0.4	0.3

	Assump	h0	No l	;	All		clipi] a5	Pi	101	١,	< i	≤n•
	Assump	-30	No 2	:	611	С	(i.i-D	= 0	for.	15	:5	0-	1
	Hsaume	7017	مما		hø	o	tames						
	Hence	_ \	na	الم	1	000	L. RC	0+1]	[n+i].			
	1.6.	CIT	-	414		4.			0		2	3	,
193	C = 1	0	6.1	2	3	1 N	1 R=	1		1	1	T	Ť
	2		0	0.2		7	-			ļ.,		-	++-
-	3	+	-	0	0.4	7	diàrono	3	\vdash		2	3	+
	4	+		۲	o	0.3	dragen				-	3	,
	5	\vdash	\vdash		0	0	-		-		-	-	9
	even 1	250.6	<u> </u>			0	diagonal	_5_					
Č. s. s.d	1			.14	-								
4	Now w	diaa	2000		Ca	AGU!	ale h	e v	ىلە	es_	64		
					o 1			-					
_	When w	nside	Y /	**	- q	ne	ومسلمد	· .f-	YC	liag	una	1	
	We con	we	calu	ula t	-	14	eys a	ta	Tu	me'		_	
	when we con	sid	er	the	0 1	cho	2 valu	us -	for	مناه	ممو	فله	
	when	We.	Con	·	٠.	0						_	•
_	we o	n side	22	211	4	-0	Yalu		for	di	ago	nal	2
	we co	[n]	i.e	c F	75	ر د	45 · 1	tenc	e.	71			
	optim	مل	5	plu.	na.	_	ملانه	giv	e t	he.			
					-						_	_	
											Siele		

4. A Explain the concept of Backtracking and Branch and Bound

1	Backtracking:-
	among various choices, where
25	- You don't have enough information to know what to choose - Each decision leads to a new set of choices
	- Some sequence of choices (possibly move than one) may be a solution to your problem
	Backtracking is a methodical way of trying out various
20	sequences of decisions, until you find one that works.

	Branch and Boundi-
	Fearible Solution is a point in the problems search space
	that satisfies all the problems constraints
	Optimal Solidzon is a feasible solution with the best value
	of the objective function Problem Eg: TSP => lowerband
	Optimization Maximization Problem Eg: Knapsack Rob Problem Wyper Bound
	Branch and Bound strategy can be used to solve
	optimization problems without an exhaustive search in
10	the average case
	2 Mechanisms;
	- A mechanism to generate branches when searching
	The minder specie
	- A mechanism to generate a bound so that many
15	branches can be terminated.
	It is efficient in the guerage case because many branches can be terminated very easilys but a large state space
	tree is generated in a worst case.
	Many NP-hard Problems can be solved by Branch
20	and Bound efficiently in the average case, however
	the what case time complexity is still exposeration.
	Compared to backtraking, branch and bound require
	two additional items
	- a way to provide, for every node of a state-space
28	tree, a bound on the best value of the objective function
	on any solution that can be obtained by adding towsher
	components to the partially constructed solution represented
	by the node
	- the value of the best solution so far.

4. B What is N-Queen's Problem? Illustrate 4-Queens problem using Backtracking and obtain the solution.

10	n-Queens Problem
	Place in queens on an niby-n' chess board so
	that no two of them are En the same now, column or
	diagonal.
-	For n=1, 1x1 board [a] - Trivial solution
15	for n=2, 2x2 board al _ No solution.
	Q2 ?
ı.	For n=3, 3x3 board as az No solution
20	
20	Q3 ?
	For n=4, 4×4 board
	1 2 3 4 Queen1
	2 queen 2.
126	3 queen3
	4 queen 4
	Attack positions & X X X
	× ×
30	X X

5. A Solve subset sum problem for the following example S= {3, 5, 6, 7} and d=15. Construct a state space tree.

5. B Write algorithm for Graph Coloring problem

	U
	Algorithm medoring (ent k)
	do {
	a[k] = getNodeCdor(k);
15	Ef (x[k]==0) return; // No new ider possible
	if (k == n) write (x[1n]); / All vertices are
	else modering(k+1); // next node
	g while (true);
	3
30	Algerichm get Node Color (k)
	do {
	$a[K] = (a[K] + 1) \operatorname{road}(m+1)$; // Next highest cold
	if (x[K] ==0) return; / All colors have been used
20	for(j=1;j<=n;j++)
	E if (G(K)[j] to de x[K] == n[j]) // same code
	break;
	§ ()
	of (j == n+1) return; 1 new color found
×	\$ while(1);
	3

6. Solve and find the shortest path between each pair of vertices for the graph given below. Write the algorithm for Floyd's.

Algorithm: Floyd. (W [] n 1 n]).
// Input: Weight matrix W of graph with no
negative length aycle
1/Output: The distance matrix 0 of shortest
pathis lengths.
DE W
for k < 1 to n do
for i = 1 to n do
for it ton do.
pri, i] = min (D [i, i], (D [i, k] + D [k, i])
vetum 0
Time complexity = O(13).
S. P. P. C. Jackson, P.

kan.	Example: (a) < 2(b)
3.1	3 6 4
-30°	(a)
- AH (abcd
Char	Weight matrix W= a o o o 3 co
	b 2 0 00 00.
	c 00 7 0 1
	d 6 00 00 0
d.a	$D^{(6)} = W = a$ $0 = a = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 $
rage	c 0 7 01 weight matrix.
1	d. [6] & co o -> length of shortest
	path with no intermediate
	lemed leshices.
	Boned row and column are wed
	to generate D(1).

Lalin	a b c d
	D(1) = a O (0.) 3 o. rengths of shortest path.
	b 2 0 5 00 by considering intermedials
	c on 7 ia 1 vertices not higher than 1.
Stage	d 6 0 9 0 ie just a.
2.	Boxed row two new shortest path from bto c and d to c.
	generating D(2).
	= mind 00, 2+3 }= mind 00,
	= 5.

	similarly. D" [dic] = min of potaic], portain + or [aid]
	= min of \omega, 6+3\frac{3}{2} = min of \omega, 9\frac{3}{2}
	ج٩.
	a b c d rengths of shortest path by
0 (2)=	a 0 0 2 0 considering intermediate vertices
	b 2 0. 5 a not higher than 2 i'e a and b
	c (9 7 0 1) , One new shortest path from.
	d 6 a 9 0 Ctoa.
Jage 3.	Boxed row and Da [c1a] = min (1) [c1a] + 0 [b1a]
	Column are mea
	for generating D(3). = min of ∞ , $\mp + 2 \frac{1}{2} = 9$.

	0 b c d slength of shortest path by considering intermediate vertices
Stage 4.	1 0 0 5 6 a a b E
	c q 7 0 1 7 four new shortest path from a to b,
£	d 6 16.90 atod, btod and d to b.
	(3) (4) (3) - (3) - (3)
	Boxed row and D[a1b]=min D[a1b], 0 [a1c]+ 0 [c1b]
	Column one used
	For generating $0^{(4)}$ min $\int \infty$, $3+7y=10$

$$p^{(9)}[a_1d] = \begin{cases} p^{(9)}(a_1d), p^{(9)}[a_1c] + p^{(1)}[c_1d) \end{cases}$$

$$= \min \left\{ \omega, 3+1 \right\} = 4.$$

$$p^{(9)}[b_1d] = \min \left\{ p^{(2)}[b_1d], p^{(2)}[b_1c] + p^{(2)}[c_1d] \right\}$$

$$= \min \left\{ \omega, 5+1 \right\} = 6.$$

$$p^{(9)}[d_1b] = \min \left\{ p^{(2)}[d_1b], p^{(2)}[d_1c] + p^{(2)}[c_1b] \right\}$$

$$= \min \left\{ \omega, 9+7 \right\} = 16.$$

7. Solve the job assignment problem for the following and obtain the optimal solution

	Assignment Problem: - (It is a Minimization Problem) Assigning a people to a jobs so that the total east of the assignment is as small as possible. An axin cost
	Assigning a people to a jobs so that the total east o
	the automent is as small as possible - An axin cost
	and design of the state of
15	matrix C is given
-	rjobi job2 job3 job4
	9 2 7 8 person a
	6 4 3 7 person b
	C= 6 4 3 7 person b 5 8 1 8 person c 7 6 9 4 person d
20	7 6 9 4 persond
	Lower bount 16 = sun of smallest elements in each 9000
	Imilest ele in siau4
25	semallest ele in 20001
4.0	Assignery job 1 to persona, inc. a -> 1, then cost = 9
	then 1b = 9+3+1+4 = 17
	1 \ \ smallstele in 20004
	smallest ele en 2003
30	Assigning job 2 to person a , ie $a \rightarrow 2$ /then cost = 2 then $b = 2 + 3 + 1 + 4 = 10$
	-fren 1b = (2)+3+1+4 = 10

