

CMR

INSTIT UTE OF

TECHNLOGY
USN

Third Internal Test-May 2019

Sub: Software Engineering Sub Code: 17CS45 Branch: ISE

Date: 15/05/2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: IV- A

Scheme and Solutions

1 (a). State the principles of agile methods.

Principle Description

Customer

involvement

Customers should be closely involved throughout the development

process. Their role is provide and prioritize new system requirements

and to evaluate the iterations of the system.

Incremental

delivery

The software is developed in increments with the customer specifying

the requirements to be included in each increment.

People not process The skills of the development team should be recognized and exploited.

Team members should be left to develop their own ways of working

without prescriptive processes.

Embrace change Expect the system requirements to change and so design the system to

accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in the

development process. Wherever possible, actively work to eliminate

complexity from the system.

1 (b). Explain plan driven agile development process

 Program specification, design and implementation are inter-leaved

 The system is developed as a series of versions or increments with stakeholders involved in version

specification and evaluation

 Frequent delivery of new versions for evaluation

 Extensive tool support (e.g. automated testing tools) used to support development.

 Minimal documentation – focus on working code



 Plan-driven development

 A plan-driven approach to software engineering is based around separate development stages with

the outputs to be produced at each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental development is possible

 Iteration occurs within activities.

 Agile development

 Specification, design, implementation and testing are inter-leaved and the outputs from the

development process are decided through a process of negotiation during the software

development process.

 2. Explain the practices involved in extreme programming

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be included in

a release are determined by the time available and their relative priority.

The developers break these stories into development ‘Tasks’

Small releases The minimal useful set of functionality that provides business value is

developed first. Releases of the system are frequent and incrementally add

functionality to the first release.

Simple design Enough design is carried out to meet the current requirements and no

more.

Test-first development An automated unit test framework is used to write tests for a new piece of

functionality before that functionality itself is implemented.

Refactoring All developers are expected to refactor the code continuously as soon as

possible code improvements are found. This keeps the code simple and

maintainable.

Pair programming Developers work in pairs, checking each other’s work and providing the

support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that no islands

of expertise develop and all the developers take responsibility for all of the

code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into the whole

system. After any such integration, all the unit tests in the system must

pass.

Sustainable pace Large amounts of overtime are not considered acceptable as the net effect

is often to reduce code quality and medium term productivity

On-site customer A representative of the end-user of the system (the customer) should be

available full time for the use of the XP team. In an extreme programming

process, the customer is a member of the development team and is

responsible for bringing system requirements to the team for

implementation.

3. List and explain the various COCOMO cost estimation models
 COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software estimates.
 The sub-models in COCOMO 2 are:

 Application composition model. Used when software is composed from existing parts.
 Supports prototyping projects and projects where there is extensive reuse.

 Based on standard estimates of developer productivity in application (object) points/month.

 Takes software tool use into account.

 Formula is

 PM = (NAP ´ (1 - %reuse/100)) / PROD

 PM is the effort in person-months, NAP is the number of application points and PROD is the

productivity.

 Early design model. Used when requirements are available but design has not yet started.
 Estimates can be made after the requirements have been agreed.
 Based on a standard formula for algorithmic models

 PM = A ´ SizeB ´ M where

 M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED;
 A = 2.94 in initial calibration,
 Size in KLOC,
 B varies from 1.1 to 1.24 depending on novelty of the project, development flexibility, risk

management approaches and the process maturity.
 Reuse model. Used to compute the effort of integrating reusable components.

 For generated code:

 PM = (ASLOC * AT/100)/ATPROD

 ASLOC is the number of lines of generated code

 AT is the percentage of code automatically generated.

 ATPROD is the productivity of engineers in integrating this code.

 When code has to be understood and integrated:

 ESLOC = ASLOC * (1-AT/100) * AAM.

 ASLOC and AT as before.

 AAM is the adaptation adjustment multiplier computed from the costs of changing the

reused code, the costs of understanding how to integrate the code and the costs of reuse

decision making.

 Post-architecture model. Used once the system architecture has been designed and more
information about the system is available.

 The code size is estimated as:

 Number of lines of new code to be developed;

 Estimate of equivalent number of lines of new code computed using the reuse model;

 An estimate of the number of lines of code that have to be modified according to

requirements changes.



4. What are product metrics? Explain the different type’s software product metrics.
 A quality metric should be a predictor of product quality.

 Classes of product metric

 Dynamic metrics which are collected by measurements made of a program in execution;

 Static metrics which are collected by measurements made of the system representations;

 Dynamic metrics help assess efficiency and reliability

 Static metrics help assess complexity, understandability and maintainability.

 Dynamic metrics are closely related to software quality attributes

 It is relatively easy to measure the response time of a system (performance attribute) or the number

of failures (reliability attribute).

 Static metrics have an indirect relationship with quality attributes

 You need to try and derive a relationship between these metrics and properties such as complexity,

understandability and maintainability.

Software metric Description

Fan-in/Fan-out Fan-in is a measure of the number of functions or methods that

call another function or method (say X). Fan-out is the number of

functions that are called by function X. A high value for fan-in

means that X is tightly coupled to the rest of the design and

changes to X will have extensive knock-on effects. A high value

for fan-out suggests that the overall complexity of X may be high

because of the complexity of the control logic needed to

coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger

the size of the code of a component, the more complex and

error-prone that component is likely to be. Length of code has

been shown to be one of the most reliable metrics for predicting

error-proneness in components.

Software metric Description

Cyclomatic complexity This is a measure of the control complexity of a program. This

control complexity may be related to program understandability. I

discuss cyclomatic complexity in Chapter 8.

Length of identifiers This is a measure of the average length of identifiers (names for

variables, classes, methods, etc.) in a program. The longer the

identifiers, the more likely they are to be meaningful and hence the

more understandable the program.

Depth of conditional

nesting

This is a measure of the depth of nesting of if-statements in a

program. Deeply nested if-statements are hard to understand and

potentially error-prone.

Fog index This is a measure of the average length of words and sentences in

documents. The higher the value of a document’s Fog index, the

more difficult the document is to understand.

5. Draw and explain the block diagram of SCRUM process and list the characteristics of SCRUM

process.

The Product Owner is responsible for maximizing return on investment (ROI) by identifying product

features, translating these into a prioritized list, deciding which should be at the top of the list for the next

Sprint, and continually re-prioritizing and refining the list.

Scrum calls for four ceremonies that bring structure to each sprint:

 Sprint planning: A team planning meeting that determines what to complete in the coming sprint.

 Daily stand-up: Also known as a Daily Scrum, a 15- minute mini-meeting for the software team to
sync.

 Sprint demo: A sharing meeting where the team shows what they've shipped in that sprint.

 Sprint retrospective: A review of what did and didn't go well with actions to make the next sprint
better

The Project Owner:

– creates a prioritized wish list called a product backlog
– closely partners with the business and the team to ensure everyone understands the work items in the

product backlog
– gives the team clear guidance on which features to deliver next

– decides when to ship the product with a preference towards more frequent delivery

6. Explain how the reviews and inspections are used to check the quality of project delivery with

checklist.
 A group examines part or all of a process or system and its documentation to find potential problems.

 Software or documents may be 'signed off' at a

review which signifies that progress to the next

development stage has been approved by

management.

 There are different types of review with different objectives

 Inspections for defect removal (product);

 Reviews for progress assessment (product and process);

 Quality reviews (product and standards).

 Pre-review activities

 Pre-review activities are concerned with review planning and review preparation

 The review meeting

 During the review meeting, an author of the document or program being reviewed should ‘walk

through’ the document with the review team.

 Post-review activities

 These address the problems and issues that have been raised during the review meeting.

Fault class Inspection check

Data faults  Are all program variables initialized before their values are used?

 Have all constants been named?

 Should the upper bound of arrays be equal to the size of the array or Size -

1KB

 If character strings are used, is a delimiter explicitly assigned?

 Is there any possibility of buffer overflow?

Control faults  For each conditional statement, is the condition correct?

 Is each loop certain to terminate?

 Are compound statements correctly bracketed?

 In case statements, are all possible cases accounted for?

 If a break is required after each case in case statements, has it been

included?

Input/output

faults

 Are all input variables used?

 Are all output variables assigned a value before they are output?

 Can unexpected inputs cause corruption?

Fault class Inspection check

Interface faults  Do all function and method calls have the correct number of parameters?

 Do formal and actual parameter types match?

 Are the parameters in the right order?

 If components access shared memory, do they have the same model of the

shared memory structure?

Storage management

faults

 If a linked structure is modified, have all links been correctly reassigned?

 If dynamic storage is used, has space been allocated correctly?

 Is space explicitly deallocated after it is no longer required?

Exception

management faults

 Have all possible error conditions been taken into account?

7 Explain ISO 9001 standards framework process and quality management

 An international set of standards that can be used as a basis for developing quality management

systems.

 ISO 9001, the most general of these standards, applies to organizations that design, develop and

maintain products, including software.

 The ISO 9001 standard is a framework for developing software standards.

 It sets out general quality principles, describes quality processes in general and lays out the

organizational standards and procedures that should be defined. These should be documented

in an organizational quality manual.

 Quality standards and procedures should be documented in an organisational quality manual.

 An external body may certify that an organisation’s quality manual conforms to ISO 9000

standards.

 Some customers require suppliers to be ISO 9000 certified although the need for flexibility

here is increasingly recognised.

 The ISO 9001 certification is inadequate because it defines quality to be the conformance to

standards.

 It takes no account of quality as experienced by users of the software. For example, a company could

define test coverage standards specifying that all methods in objects must be called at least once.

 Unfortunately, this standard can be met by incomplete software testing that does not include tests

with different method parameters. So long as the defined testing procedures are followed and test

records maintained, the company could be ISO 9001 certified.

8a Explain the key features of testing XP

 Extreme programming has a technical focus and is not easy to integrate with management practice in

most organizations.

 Consequently, while agile development uses practices from XP, the method as originally defined is

not widely used.

 Key practices

 User stories for specification

 Refactoring

 Test-first development

 Pair programming

8b Write a short note software quality

 Concerned with ensuring that the required level of quality is achieved in a software product.

 Three principal concerns:

 At the organizational level, quality management is concerned with establishing a framework

of organizational processes and standards that will lead to high-quality software.

 At the project level, quality management involves the application of specific quality

processes and checking that these planned processes have been followed.

 At the project level, quality management is also concerned with establishing a quality plan

for a project. The quality plan should set out the quality goals for the project and define what

processes and standards are to be used.

 Quality management provides an independent check on the software development process.

 The quality management process checks the project deliverables to ensure that they are consistent

with organizational standards and goals

 The quality team should be independent from the development team so that they can take an objective

view of the software. This allows them to report on software quality without being influenced by

software development issues.

CO5 L3

CO4 L3

CO5 L1

7 Explain ISO 9001 standards framework process and quality management

[10]

8a Explain the key features of testing XP [05]

8b Write a short note software quality [05]

Course Outcomes

M
o

d
u

le
s

co
v

er
ed

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

P
S

O
4

CO1
Design a software system, component, or

process to meet desired needs within realistic

constraints.
1,2,5 2 1 3 - - - - - - 1 - - 1 - - -

CO2 Assess professional and ethical responsibility 1 - - - - - - - 3 - - - - - - - -

CO3
Function on multi-disciplinary teams

4, mini-

project
- 1 - 1 - - - - 3 1 1 2 2 - - -

CO4
Use the techniques, skills, and modern

engineering tools necessary for

engineering practice
1,2,3,4,5 2 - - - 2 - - - - - - - - - - -

CO5

Analyze, design, implement, verify,

validate, implement, apply, and maintain

software systems or parts of software

systems.

1,2,3,4 2 1 2 1 - - - - - 1 - - 1 - - -

CO6

Demonstrate an understanding of and

apply current theories, models, and

techniques that provide a basis for the

software lifecycle

1,2 2 3 3 2 1 - - - - - 2 3 - 2 -

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate,

differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3
Design/development of

solutions
PO9 Individual and team work 2

Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Implement and maintain enterprise solutions using latest technologies.

PSO2
Develop and simulate wired & wireless network protocols for various network applications

using modern tools.

PSO3 Apply the knowledge of Information technology and software testing to maintain legacy systems.

PSO4 Apply knowledge of web programming and design to develop web based applications using

database and other technologies.

