

Scheme of Evaluation

Internal Assessment Test 3 – May.2019

Sub: Computer Graphics and Visualization Code: 15CS62

Date: 13/05/2019 Duration: 90mins
Max

Marks: 50
Sem: VI Branch: CSE

Note: Answer Any Five Questions

Question # Marks Distribution Max Marks

1. Explain different light sources? Define viewport and

explain function to define viewport?

Light sources: 6Marks

Viewport : 4Marks
10M

2. Explain normalization transformation for orthogonal

projection with neat diagram?

Diagram : 4 Marks

Formula & Explanation : 6 Marks
10M

3. Derive perspective projection transformation coordinates

and represent in matrix format?

Diagram : 1 Mark

Derivation: 7 Marks

Matrix form : 2 Marks

10M

4. Write and explain depth buffer algorithm? Algorithm : 5 Marks

Explanation : 5 Marks
10M

5. Write a program to animate a flag using Bezier Curve

algorithm.

Main : 2 Marks

Display : 2Marks

Bazier : 6Marks

10M

6. Explain basic illumination model? Explain Phong model. Basic Illumination model: 3 Marks

Phong Model : 5 Marks

Diagrams : 2Marks

10M

7. Write an interactive program to rotate a square. Main : 2 Marks

Display : 2Marks

Idle Function: 2 Makrs

Rotate code: 4 Marks

10M

8. Write a note on logical operations. Explain XOR

operation in detail.

Logical Op with diagram: 5 marks

XOR Op: 5 marks
10M

SOLUTIONS

1. Explain different light sources? Define viewport and explain function to define

viewport?

Point Light Sources:

 The simplest model for an object that is emitting radiant energy is a point

light source with a single color, specified with three RGB components.

 A point source for a scene by giving its position and the color of the

emitted light. Light rays are generated along radially diverging paths from

the single-color source position. This light-source model is a reasonable

approximation for sources whose dimensions are small compared to the

size of objects in the scene.

Infinitely Distant Light Sources:

 A large light source, such as the sun, that is very far from a

scene can also be approximated as a point emitter, but there is

little variation in its directional effects.

 The light path from a distant light source to any position in

the scene is nearly constant.

 We can simulate an infinitely distant light source by

assigning it a color value and a fixed direction for the light rays emanating from the source.

 The vector for the emission direction and the light-source color are needed in the illumination

calculations, but not the position of the source.
Radial Intensity Attenuation:

 As radiant energy from a light source travels outwards through space, its amplitude at any

distance dl from the source is attenuated by the factor 1/d
2
 a surface close to the light source

receives a higher incident light intensity from that source than a more distant surface. However,

using an attenuation factor of 1/dl
2
 with a point source does not always produce realistic pictures.

The factor 1/dl
2
 tends to produce too much intensity variation for objects that are close to the

light source, and very little variation when dl is large.

 We can attenuate light intensities with an inverse quadratic function of dl that includes a linear

term:

 The numerical values for the coefficients, a0, a1, and a2, can then be adjusted to produce optimal

attenuation effects.

 We cannot apply intensity-attenuation calculation 1 to a point source at “infinity,” because the

distance to the light source is indeterminate. We can express the intensity-attenuation function as

Directional Light Sources and Spotlight Effects:

 A local light source can be modified easily to produce a directional, or spotlight, beam of light.

 If an object is outside the directional limits of the

light source, we exclude it from illumination by that

source. One way to set up a directional light source

is to assign it a vector direction and an angular limit

θl measured from that vector direction, in addition

to its position and color.

 We can denote Vlight as the unit vector in the light-

source direction and Vobj as the unit vector in the

direction from the light position to an object

position.

Then Vobj ·Vlight = cos α

where angle α is the angular distance of the object from the light direction vector.

 If we restrict the angular extent of any light cone so that 0◦ < θl ≤ 90◦, then the object is within

the spotlight if cosα ≥ cosθl , as shown

 If Vobj ·Vlight < cos θl , however, the object is outside the light cone.
Angular Intensity Attenuation:

 For a directional light source, we can attenuate the light intensity angularly about the source as

well as radially out from the point-source position

 This allows intensity decreasing as we move farther from the cone axis.

 A commonly used angular intensity-attenuation function for a directional light source is

 Where the attenuation exponent al is assigned some positive value and angle φ is measured from

the cone axis. The greater the value for the attenuation exponent al, the smaller the value of the

angular intensity-attenuation function for a given value of angleφ > 0◦.

 There is no angular attenuation if the light source is not directional (not a spotlight).

 We can express the general equation for angular attenuation as

Viewport:

Graphics packages allow us also to control the placement within the display window using another

“window” called the viewport. Objects inside the clipping window are mapped to the viewport, and it is

the viewport that is then positioned within the display window. The clipping window selects what we

want to see; the viewport indicates where it is to be viewed on the output device. By changing the

position of a viewport, we can view objects at different positions on the display area of an output device.

Viewport is defined using following function:

glViewport (xvmin, yvmin, vpWidth, vpHeight);

The first two parameters in this function specify the integer screen position of the lower left corner of

the viewport relative to the lower-left corner of the display window. And the last two parameters give

the integer width and height of the viewport. To maintain the proportions of objects in a scene, we set

the aspect ratio of the viewport equal to the aspect ratio of the clipping window.

2. Explain normalization transformation for orthogonal projection with neat

diagram?
 Once we have established the limits for the view volume,

coordinate descriptions inside this rectangular

parallelepiped are the projection coordinates, and they

can be mapped into a normalized view volume without

any further projection processing.

 Some graphics packages use a unit cube for this

normalized view volume, with each of the x, y, and z

coordinates normalized in the range from 0 to 1.

 Another normalization-transformation approach is to use

a symmetric cube, with coordinates in the range from −1

to 1.

 We can convert projection coordinates into positions within a left-handed normalized coordinate

reference frame, and these coordinate positions will then be transferred to left handed screen

coordinates by the viewport transformation.

 To illustrate the normalization transformation, we assume that the orthogonal-projection view

volume is to be mapped into the symmetric normalization cube within a left-handed reference

frame.

 Also, z-coordinate positions for the near and far planes are denoted as znear and zfar,

respectively. Figure below illustrates this normalization transformation. Position (xmin, ymin,

znear) is mapped to the normalized position (−1, −1, −1), and position (xmax, ymax, zfar) is

mapped to (1, 1, 1).

 The normalization transformation for the orthogonal view volume is

3. Derive perspective projection transformation coordinates and represent in matrix

format?
Figure below shows the projection path of a spatial position (x, y, z) to a generalprojection reference

point at (xprp, yprp, zprp).

 The projection line intersects the view plane at the coordinate position (xp, yp, zvp), where Zvp

is some selected position for the view plane on the Zview axis.

 We can write equations describing coordinate positions along this perspective-projection line in

parametric form as

 On the view plane, z’ = Zvp and we can solve the z’ equation for parameter u at this position

along the projection line:

 Substituting this value of u into the equations for x’ and y’, we obtain the general perspective-

transformation equations

4. Write and explain depth buffer algorithm?
 A commonly used image-space approach for

detecting visible surfaces is the depth-buffer

method, which compares surface depth values

throughout a scene for each pixel position on the

projection plane.

 The algorithm is usually applied to scenes

containing only polygon surfaces, because depth

values can be computed very quickly and the

method is easy to implement.

 This visibility-detection approach is also

frequently alluded to as the z-buffer method,

because object depth is usually measured along

the z axis of a viewing system.

 The figure here shows three surfaces at varying distances along the orthographic projection line from

position (x, y) on a view plane.

 These surfaces can be processed in any order.

 If a surface is closer than any previously processed surfaces, its surface color is calculated and saved,

along with its depth.

 The visible surfaces in a scene are represented by the set of surface colors that have been saved after

all surface processing is completed.

 As implied by the name of this method, two buffer areas are required. A depth buffer is used to store

depth values for each (x, y) position as surfaces are processed, and the frame buffer stores the

surface-color values for each pixel position.

Depth-Buffer Algorithm:

1. Initialize the depth buffer and frame buffer so that for all buffer positions (x, y),

depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor

2. Process each polygon in a scene, one at a time, as follows:

o For each projected (x, y) pixel position of a polygon, calculate the depth z (if not already

known).

o If z < depthBuff (x, y), compute the surface color at that position and set

depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y)

After all surfaces have been processed, the depth buffer contains depth values for the visible surfaces

and the frame buffer contains the corresponding color values for those surfaces.

 Given the depth values for the vertex positions of any polygon in a scene, we can calculate the depth

at any other point on the plane containing the polygon. At surface position (x, y), the depth is

calculated from the plane equation as

 If the depth of position (x, y) has been determined to be z, then the depth z’ of the next position

(x+1,y) along the scan line is obtained as,

 The ratio −A/C is constant for each surface, so succeeding depth values across a scan line are

obtained from preceding values with a single addition.

 We can implement the depth-buffer algorithm by starting at a top vertex of the polygon.

 Then, we could recursively calculate the x-coordinate values down a left edge of the polygon.

 The x value for the beginning position on each scan line can be calculated from the beginning (edge)

x value of the previous scan line as

 where m is the slope of the edge.

 Depth values down this edge are obtained recursively as

 If we are processing down a vertical edge, the slope is infinite and the recursive calculations reduce

to

5. Write a program to animate a flag using Bezier Curve algorithm.
#include<GL/glut.h>

#include<stdio.h>

#include<math.h>

#define PI 3.1416

GLsizei winWidth = 600, winHeight = 600;

GLfloat xwcMin = 0.0, xwcMax = 130.0;

GLfloat ywcMin = 0.0, ywcMax = 130.0;

typedef struct wcPt3D

{

GLfloat x, y, z; };

void bino(GLint n, GLint *C){

GLint k, j;

for(k=0;k<=n;k++){

C[k]=1;

for(j=n;j>=k+1; j--)

C[k]*=j;

for(j=n-k;j>=2;j--)

C[k]/=j;

}

}

void computeBezPt(GLfloat u, wcPt3D *bezPt, GLint nCtrlPts, wcPt3D *ctrlPts,

Glint *C){

GLint k, n=nCtrlPts-1;

GLfloat bezBlendFcn;

bezPt ->x =bezPt ->y = bezPt->z=0.0;

for(k=0; k< nCtrlPts; k++) {

bezBlendFcn = C[k] * pow(u, k) * pow(1-u, n-k);

bezPt ->x += ctrlPts[k].x * bezBlendFcn;

bezPt ->y += ctrlPts[k].y * bezBlendFcn;

bezPt ->z += ctrlPts[k].z * bezBlendFcn;

}

}

void bezier(wcPt3D *ctrlPts, GLint nCtrlPts, GLint nBezCurvePts){

wcPt3D bezCurvePt;

GLfloat u;

GLint *C, k;

C= new GLint[nCtrlPts];

bino(nCtrlPts-1, C);

glBegin(GL_LINE_STRIP);

for(k=0; k<=nBezCurvePts; k++){

u=GLfloat(k)/GLfloat(nBezCurvePts);

computeBezPt(u, &bezCurvePt, nCtrlPts, ctrlPts, C);

glVertex2f(bezCurvePt.x, bezCurvePt.y);

}

glEnd();

delete[]C;

}

void displayFcn(){

GLint nCtrlPts = 4, nBezCurvePts =20;

static float theta = 0;

wcPt3D ctrlPts[4] = { {20, 100, 0}, {30, 110, 0}, {50, 90, 0}, {60, 100, 0}};

ctrlPts[1].x +=10*sin(theta * PI/180.0);

ctrlPts[1].y +=5*sin(theta * PI/180.0);

ctrlPts[2].x -= 10*sin((theta+30) * PI/180.0);

ctrlPts[2].y -= 10*sin((theta+30) * PI/180.0);

ctrlPts[3].x-= 4*sin((theta) * PI/180.0);

ctrlPts[3].y += sin((theta-30) * PI/180.0);

theta+=0.1;

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

 glPointSize(5);

 glPushMatrix();

 glLineWidth(5);

glColor3f(255/255, 153/255.0, 51/255.0); //Indian flag: Orange color code

 for(int i=0;i<8;i++){

glTranslatef(0, -0.8, 0);

bezier(ctrlPts, nCtrlPts, nBezCurvePts);

}

 glColor3f(1, 1, 1); //Indian flag: white color code

 for(int i=0;i<8;i++){

glTranslatef(0, -0.8, 0);

bezier(ctrlPts, nCtrlPts, nBezCurvePts);

}

 glColor3f(19/255.0, 136/255.0, 8/255.0); //Indian flag: green color code

 for(int i=0;i<8;i++){

glTranslatef(0, -0.8, 0);

bezier(ctrlPts, nCtrlPts, nBezCurvePts);

}

glPopMatrix();

glColor3f(0.7, 0.5,0.3);

glLineWidth(5);

glBegin(GL_LINES);

glVertex2f(20,100);

glVertex2f(20,40);

glEnd();

glFlush();

glutPostRedisplay();

glutSwapBuffers();

}

void winReshapeFun(GLint newWidth, GLint newHeight){

glViewport(0, 0, newWidth, newHeight);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(xwcMin, xwcMax, ywcMin, ywcMax);

glClear(GL_COLOR_BUFFER_BIT);

}

void main(int argc, char **argv){

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowPosition(50, 50);

glutInitWindowSize(winWidth, winHeight);

glutCreateWindow("Bezier Curve");

glutDisplayFunc(displayFcn);

glutReshapeFunc(winReshapeFun);

glutMainLoop();

}

6. Explain basic illumination model? Explain Phong model.

Basic Illumination Models:

 Light-emitting objects in a basic illumination model are generally limited to point sources many

graphics packages provide additional functions for dealing with directional lighting (spotlights) and

extended light sources.

Ambient Light:

 This produces a uniform ambient lighting that is the same for all objects, and it approximates the

global diffuse reflections from the various illuminated surfaces.

 Reflections produced by ambient-light illumination are simply a form of diffuse reflection, and

they are independent of the viewing direction and the spatial orientation of a surface.

 However, the amount of the incident ambient light that is reflected depends on surface optical

properties, which determine how much of the incident energy is reflected and how much is

absorbed

Diffuse Reflection:

 The incident light on the surface is scattered with

equal intensity in all directions, independent of the

viewing position.

 Such surfaces are called ideal diffuse reflectors they are also referred to as Lambertian reflectors,

because the reflected radiant light energy from any point on the surface is calculated with

Lambert’s cosine law.

 Assuming that every surface is to be treated as an ideal diffuse reflector (Lambertian), we can set

a parameter kd for each surface that determines the fraction of the incident light that is to be

scattered as diffuse reflections.

 This parameter is called the diffuse-reflection coefficient or the diffuse reflectivity. The ambient

contribution to the diffuse reflection at any point on a surface is simply

 We can model the diffuse reflections from a light source with intensity Il using the calculation,

 At any surface position, we can denote the unit normal vector as N and the unit direction vector

to a point source as L,

 The diffuse reflection equation for single point-source illumination at a surface position can be

expressed in the form

Specular Reflection and the Phong Model:

 The bright spot, or specular reflection, that we can see on a shiny surface is the result of total, or

near total, reflection of the incident light in a concentrated region around the specular-reflection

angle.

 The below figure shows the specular reflection direction for a position on an illuminated surface.

1. N represents: unit normal surface vector The specular reflection angle equals the angle of

the incident light, with the two angles measured on opposite sides of the unit normal

surface vector N

2. R represents the unit vector in the direction of ideal specular reflection,

3. L is the unit vector directed toward the point light source, and

4. V is the unit vector pointing to the viewer from the selected surface position.

 Angle φ is the viewing angle relative to the specular-reflection direction R

 An empirical model for calculating the specular reflection range, developed by Phong Bui Tuong

and called the Phong specular-reflection model or simply the Phon G model, sets the intensity of

specular reflection proportional to cosns φ

 Angle φ can be assigned values in the range 0◦ to 90◦, so that cos φ varies from 0 to 1.0.

 The value assigned to the specular-reflection exponent ns is determined by the type of surface

that we want to display.

 A very shiny surface is modeled with a large value for ns (say, 100 or more), and smaller values

(down to 1) are used for duller surfaces.

 For a perfect reflector, ns is infinite. For a rough surface, such as chalk or cinderblock, ns is

assigned a value near 1.

 We can approximately model monochromatic specular intensity variations using a specular-

reflection coefficient, W(θ), for each surface.

 In general, W(θ) tends to increase as the angle of incidence increases. At θ = 90◦, all the incident

light is reflected (W(θ) = 1).

 Using the spectral-reflection function W(θ), we can write the Phong specular-reflection model as

where Il is the intensity of the light source, and φ is the viewing angle relative to the specular reflection

direction R.

 Because V and R are unit vectors in the viewing and specular-reflection directions, we can

calculate the value of cos φ with the dot product V·R.

 In addition, no specular effects are generated for the display of a surface if V and L are on the

same side of the normal vector N or if the light source is behind the surface.

 We can determine the intensity of the specular reflection due to a point light source at a surface

position with the calculation.

7. Write an interactive program to rotate a square.

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

#include<math.h>

#include<stdio.h>

GLfloat theta,thetar;

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 thetar=theta/(3.14159/180.0); //convert theta in degrees to

radians

 glVertex2f(cos(thetar),sin(thetar));

 glVertex2f(-sin(thetar),cos(thetar));

 glVertex2f(-cos(thetar),-sin(thetar));

 glVertex2f(sin(thetar),-cos(thetar));

 glEnd();

 glFlush();

 glutSwapBuffers();

}

void idle()

{

 theta+=2;

 if(theta>=360.0) theta-=360.0;

 glutPostRedisplay();

}

void mouse(int button,int state,int x,int y) // change idle

function based on

 // mouse button pressed

{

 if(button==GLUT_LEFT_BUTTON&&state==GLUT_DOWN)

 glutIdleFunc(idle);

 if(button==GLUT_RIGHT_BUTTON&&state==GLUT_DOWN)

 glutIdleFunc(NULL);

}

int main(int argc,char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

 glutCreateWindow("Rotating Square");

 // glutIdleFunc(idle);

 glutDisplayFunc(display);

 glutMouseFunc(mouse);

 glutMainLoop();

 return 0;

}

8. Write a note on logical operations. Explain XOR operation in detail.
 Two types of functions that define writing modes are:

1. Replacement mode

2. Exclusive OR (XOR)

 When program specifies about visible primitive then OpenGL renders it into set of color pixels

and stores it in the present drawing buffer.

 In case of default mode, consider we start with a color buffer then has been cleared to black.

Later we draw a blue color rectangle of size 10x10 pixels then 100 blue pixels are copied into the

color buffer, replacing 100 black pixels. Therefore, this mode is called as “copy or replacement

mode”.

 Consider the below model, where we are writing single pixel into color buffer.

 The pixel that we want to write is called as “source pixel”.

 The pixel in the drawing buffer which gets replaced by source pixel is called as

‘destination pixel’.

 In Exclusive-OR or (XOR) mode, corresponding bits in each pixel are combing using

XOR logical operation.

 If s and d are corresponding bits in the source and destination pixels, we can denote the

new destination bit as d’. d’ = d XOR s.

 One special property of XOR operation is if we apply it twice, it returns to the original

state, it returns to the original state. So, if we draw some thing in XOR mode, we can

erase it by drawing it again.

 OpenGL supports all 16 logic modes; copy mode (GL_COPY) is the default. To change

mode, we must enable logic operation, glEnable(GL_COLOR_LOGIC_OP) and then it

can change to XOR mode glLogicOp(GL_XOR).

