

USN

Solution to Internal Assessment Test III – May. 2019
Sub: System Software & Compiler Design Sub Code: 15CS63 Branch: CSE
Date: 14/05/2019 Duration: 90 min’s Max Marks: 50 Sem/Sec: 6/CSE(A,B,C) OBE

1.a) What is loader? What are advantages and disadvantages? Explain boot strap loader with algorithm.

Solution:

In computer systems a loader is the part of an operating system that is responsible for loading programs

and libraries. It is one of the essential stages in the process of starting a program, as it places programs

into memory and prepares them for execution.

Advantages

1. When source program is executed an object program getsgenerated. So there is no need to

retranslate the program each time.

2. Instead of placing the assembler in the memory the loaderoccupies a portion of the memory. A loader

is smaller than assembler so thereis no wastage of memory.

3. The source program can be written with multiple programsand multiple languages.

Disadvantages

1. If the program is modified it has to be retranslated.

2. Some portion of the memory is occupied by the loader.

A simple SIC/XE bootstrap loader

1. The bootstrap itself begins at address 0 in the memory of the machine
2. It loads the OS (or some other program) starting address 0x80
3. The object code from device F1 is always loaded into consecutive bytes of memory,

starting at address 80.

4. After all the object code from device F1 has been loaded, the bootstraps jumps to address
80

5. Begin the execution of the program that was loaded.
6. begin
7. X=0x80 ; the address of the next memory location to be loaded
8. Loop
9. A←GETC ; read one char. From device F1 and convert it from the
10. ; ASCII character code to the value of the hex digit
11. Save the value in the high-order 4 bits of S
12. A←GETC
13. A←(A+S) ; combine the value to form one byte
14. store the value (in A) to the address represented in register X
15. X←X+1
16. End

1.b) Enlist any four different loader option commands

Solution:

 1. INCLUDE program-name(library-name)

Direct the loader to read the designated object program from a library and treat it as if it were

part of the primary loader input.

2. DELETE csdect-name

Instruct the loader to delete the named control section(s) from the set of programs being
loaded.

 3. CHANGE name1, name2

Cause the external symbol name1 to be changed to name2 wherever it appears in the object
programs

INCLUDE READ(UTLIB)

INCLUDE WRITE(UTLIB)

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

17. 4.LIBRARY MYLIB

Automatic inclusion of library routines to satisfy external references Searched before the
standard libraries

NOCALL STDDEV, PLOT, CORREL

To instruct the loader that these external references are to remain unsolved.

2. Define and Explain the following:

i) Linking loader ii) Dynamic linking

Solution:

i) Linking loader

A linking loader usually makes two passes

 Pass 1 assigns addresses to all external symbols by creating ESTAB.
 Pass 2 performs the actual loading, relocation, and linking by using ESTAB.
 The main data structure is ESTAB (hashing table).

A linking loader usually makes two passes

 ESTAB is used to store the name and address of each external symbol in the set of
control sections being loaded.

 Two variables PROGADDR and CSADDR.
 PROGADDR is the beginning address in memory where the linked program is to be

loaded.
 CSADDR contains the starting address assigned to the control section currently being

scanned by the loader.

The linking loader algorithm,

 In Pass 1, concerned only Header and Defined records.
 CSADDR+CSLTH = the next CSADDR.
 A load map is generated.
 In Pass 2, as each Text record is read, the object code is moved to the specified address

(plus the current value of CSADDR).

 When a Modification record is encountered, the symbol whose value is to be used for
modification is looked up in ESTAB.

 This value is then added to or subtracted from the indicated location in memory.

Dynamic linking (dynamic loading, load on call)

 Postpones the linking function until execution time.
 A subroutine is loaded and linked to the rest the program when is first loaded.
 Dynamic linking is often used to allow several executing program to share one copy of a

subroutine or library.
1. Run-time library (C language), dynamic link library
2. A single copy of the routines in this library could be loaded into the memory of the

computer.
 Dynamic linking provides the ability to load the routines only when (and if) they are

needed.
1. For example, that a program contains subroutines that correct or clearly diagnose

error in the input data during execution.
2. If such error are rare, the correction and diagnostic routines may not be used at all

during most execution of the program.
3. However, if the program were completely linked before execution, these subroutines

need to be loaded and linked every time.
 Dynamic linking avoids the necessity of loading the entire library for each execution.
 Following Fig. illustrates a method in which routines that are to be dynamically loaded

must be called via an operating system (OS) service request.

 The program makes a load-and-call service request to OS.

 The parameter argument (ERRHANDL) of this request is the symbolic name of the
routine to be loaded.

 OS examines its internal tables to determine whether or not the routine is already loaded.
If necessary, the routine is loaded form the specified user or system libraries.

 Control id then passed form OS to the routine being called.
 When the called subroutine completes its processing, OS then returns control to the

program that issued the request.
 If a subroutine is still in memory, a second call to it may not require another load

operation.

3. Write SIC/XE source code for bootstrap loader and explain it.

Solution:

Bootstrap Loader

 When a computer is first turned on or restarted, a special type of absolute loader, called a bootstrap

loader is executed

In PC, BIOS acts as a bootstrap loader This bootstrap loads the first program to be run by the computer -

- usually an operating system

A simple SIC/XE bootstrap loader

 The bootstrap itself begins at address 0 in the memory of the machine
o It loads the OS (or some other program) starting address 0x80

 The object code from device F1 is always loaded into consecutive bytes of memory, starting at
address 80.

 After all the object code from device F1 has been loaded, the bootstraps jumps to address 80

 Begin the execution of the program that was loaded.

4. Define SDD and SDT. Write SDD for simple desk calculator and show annotated parser tree

for the expression (3+4) * (5+6)

Solution:

Syntax-Directed Definitions A syntax-directed definition (SDD) is a context-free grammar together with

attributes and rules. Attributes are associated with grammar symbols and rules are associated with

productions.

Example: PRODUCTION SEMANTIC RULE E → E1 + T E.code = E1.code || T.code || ‘+’

Syntax-Directed Translation Schemes (SDT) SDT embeds program fragments called semantic actions

within production bodies. The position of semantic action in a production body determines the order in

which the action is executed

 Example: In the rule E → E1 + T { print ‘+’ }, the action is positioned after the body of the production.

Write SDD for simple desk calculator and show annotated parser tree for the expression (3+4) * (5+6)

6.

Generate Intermediate Code for the following statements and identify the basic [10] blocks .given w=8

bytes

 for i from 1 to 10 do

 for j from 1 to 10 do

Generate Intermediate Code for the following statements and identify the basic [10] blocks .given w=8

bytes

 for i from 1 to 10 do

 for j from 1 to 10 do

 a[i,j]=0.0

for i from 1 to 10 do.

 a[i,i]=1.0

Solution:

1) i = 1

 2) j = 1

 3) t1 = 10 * i

 4) t2 = t1 + j // element [i,j]

 5) t3 = 8 * t2 // offset for a[i,j] (8 byte reals)

 6) t4 = t3 - 88 // program array starts at [1,1] assembler at [0,0]

 7) a[t4] = 0.0

 8) j = j + 1

 9) if j <= 10 goto (3)

 10) i = i + 1

 11) if i <= 10 goto (2)

 12) i = 1

 13) t5 = i - 1

 14) t6 = 88 * t5

 15) a[t6] = 1.0

 16) i = i + 1

 17) if i <= 10 goto (13)

Which quads are leaders?

1 is a leader by definition. The jumps are 9, 11, and 17. So 10 and 12 are leaders as are the

targets 3, 2, and 13.

The leaders are then 1, 2, 3, 10, 12, and 13.

The basic blocks are therefore {1}, {2}, {3,4,5,6,7,8,9}, {10,11}, {12}, and {13,14,15,16,17}.

Here is the code written again with the basic blocks indicated.

 a[i,j]=0.0

for i from 1 to 10 do.

 a[i,i]=1.0

Solution:

1) i = 1

 2) j = 1

 3) t1 = 10 * i

 4) t2 = t1 + j // element [i,j]

 5) t3 = 8 * t2 // offset for a[i,j] (8 byte reals)

 6) t4 = t3 - 88 // program array starts at [1,1] assembler at [0,0]

 7) a[t4] = 0.0

 8) j = j + 1

 9) if j <= 10 goto (3)

 10) i = i + 1

 11) if i <= 10 goto (2)

 12) i = 1

 13) t5 = i - 1

 14) t6 = 88 * t5

 15) a[t6] = 1.0

 16) i = i + 1

 17) if i <= 10 goto (13)

Which quads are leaders?

1 is a leader by definition. The jumps are 9, 11, and 17. So 10 and 12 are leaders as are the

targets 3, 2, and 13.

The leaders are then 1, 2, 3, 10, 12, and 13.

The basic blocks are therefore {1}, {2}, {3,4,5,6,7,8,9}, {10,11}, {12}, and {13,14,15,16,17}.

Here is the code written again with the basic blocks indicated.

 1) i = 1-B1

 2) j = 1-B2

 3) t1 = 10 * i

 4) t2 = t1 + j -B3 // element [i,j]

 5) t3 = 8 * t2 // offset for a[i,j] (8 byte numbers)

 6) t4 = t3 - 88 // we start at [1,1] not [0,0]

 7) a[t4] = 0.0

 8) j = j + 1

 9) if J <= 10 goto (3)

 10) i = i + 1

 11) if i <= 10 goto (2) –B4

 12) i = 1-B5

 13) t5 = i - 1

 14) t6 = 88 * t5-B6

 15) a[t6] = 1.0

 16) i = i + 1

 17) if i <= 10 goto (13)

 1) i = 1-B1

 2) j = 1-B2

 3) t1 = 10 * i

 4) t2 = t1 + j -B3 // element [i,j]

 5) t3 = 8 * t2 // offset for a[i,j] (8 byte numbers)

 6) t4 = t3 - 88 // we start at [1,1] not [0,0]

 7) a[t4] = 0.0

 8) j = j + 1

 9) if J <= 10 goto (3)

 10) i = i + 1

 11) if i <= 10 goto (2) –B4

 12) i = 1-B5

 13) t5 = i - 1

 14) t6 = 88 * t5-B6

 15) a[t6] = 1.0

 16) i = i + 1

 17) if i <= 10 goto (13)

B1

B2

B1

B2

6.Construct dependency graph for declaration float id1,id2,id3

5.a)Construct dependency graph for declaration float id1,id2,id3

B3

B4

B5

B6

B3

B4

B5

B6

 5.b) Define 1) Synthesis attribute 2) Inherited attribute with example

Each grammar symbol is associated with a set of attributes

computed w.r.t. the parsing tree

<A,N>a non terminal A labelling a node N of the parse tree

‣ Synthesized attribute of<A,N>: defined in terms of the attributes ofthe children of N and of N itself

(semantic rule associated to the production relative to N)

In this case each non terminalsymbol has aunique synthesizedattributeval

‣ Inherited attribute of<A,N>: defined in terms of the N's parent, Nitself, and N's siblings (semantic rule

associated to the productionrelative to the parent of N)

Here both inherited and synthesis attribute T.inh – values obtained from sibling from left to right

T.val-synthesis attribute –value assign from child to node N

‣ General attribute: value can be depended on the attributes of any nodes.

Terminal symbols can have synthetized attributed (computed by the lexical analyzer) but not inherited

attributes.

7.a)Obtain DAG for the expression a+a *(b-c) +(b-c)*d

7.b) Explain Syntax Directed Translation of switch statement

Solution

To translate into the form of Fig. 6.49, when we see the keyword switch, we generate two new

labels test and next, and a new temporary t. Then, as we parse the expression E, we generate code

to evaluate E into t. After processing E, we generate the jump goto test.

 Then, as we see each case keyword, we create a new label Li and enter it into the symbol table. We

place in a queue, used only to store cases, a value-label pair consisting of the value Vi of the case

constant and Li (or a pointer to the symbol-table entry for Li). We process each statement case Vi: Si by

emitting the label Liattached to the code for Si, followed by the jump goto next

When the end of the switch is found, we are ready to generate the code for the n-way branch. Reading

the queue of value-label pairs, we can generate a sequence of three-address statements of the form

shown in Fig. 6.51. There, t is the temporary holding the value of the selector expression E, and hn is the

label for the default statement

.

The case t Vi Li instruction is a synonym for if t = Vi goto Li in Fig. 6.49, but the case instruction is easier

for the final code generator to detect as a candidate for special treatment. At the code-generation

phase, these sequences of case statements can be translated into an n-way branch of the most efficient

type, depending on how many there are and whether the values fall into a small range.

8.a)Explain the following with a example 1) quadruple 2)triple 3)indirect triple 4) single
assignment form

There are 3 representations of three address code namely

1. Quadruple
2. Triples
3. Indirect Triples

1. Quadruple –
It is structure with consist of 4 fields namely op, arg1, arg2 and result. op denotes the operator
and arg1 and arg2 denotes the two operands and result is used to store the result of the
expression.

Example – Consider expression a = b * – c + b * – c.
The three address code is:

t1 = uminus c

t2 = b * t1

t3 = uminus c

t4 = b * t3

t5 = t2 + t4

a = t5

2. Triples –
This representation doesn’t make use of extra temporary variable to represent a single

operation instead when a reference to another triple’s value is needed, a pointer to that triple is
used. So, it consist of only three fields namely op, arg1 and arg2.

Example – Consider expression a = b * – c + b * – c

3. Indirect Triples –
This representation makes use of pointer to the listing of all references to computations
which is made separately and stored. Its similar in utility as compared to quadruple
representation but requires less space than it. Temporaries are implicit and easier to
rearrange code.
Example – Consider expression a = b * – c + b * – c

Static single-assignment form (SSA) is an intermediate representation that facilitates certain
code optimizations.
Two distinctive aspects that distinguish SSA from three-address code.
a. All assignments in SSA are to variables with distinct names; hence the term static single-
assignment.

Figure shows the same intermediate program in three-address code and instatic single-
assignment form.

p=a+b
q=p-c
p=q*d
p=e-p
q=p+q
Three-address code

p1=a+b
q1=p1-c
p2=q1 *d
p3=e-p2
q2=p3 +q1
Static single-assignment form

8.b) List and explain different common three address form with example.

Solution:

list of the common three-address instruction forms:

1. Assignment instructions of the form x = y op z, where op is a binary arithmetic or logical
operation, and x, y, and z are addresses.

2. Assignments of the form x = op y, where op is a unary operation. Examples of unary operations
are unary minus, logical negation, shift operators, and conversion operators.

3. Copy instructions of the form x = y, where x is assigned the value of y.

4. An unconditional jump gotoL. The three-address instruction with label L is the next to be
executed.

5. Conditional jumps of the form ifxgotoLand if False x gotoL.

6. These instructions execute the instruction with label L if x is true and false, respectively. The
following three-address instruction in sequence is executed next

7. Conditional jumps such as if x relopygotoL,

which apply a relational operator (<, ==, >=, etc.) to x and y, and execute the instruction with label L if

the relation is satisfied. If not three-address instruction following if x relopygotoLis executed next, in

sequence.

8. Procedure calls and returns are implemented using the following instructions: paramxfor
parameters; call p, n and y = call p, n for procedure and function calls, respectively; and
return y, where y, representing a returned value, is optional. Their typical use is as the
sequence of three- address instructions

param x1

param X2

• • •

paramXn

ca l l p ,n

9. Generated as part of a call of the procedure p(xi,x2,... ,xn). The integer n, indicating the
number of actual parameters in "call p, n," is not redundant because calls can be nested.

10. Indexed copy instructions of the form x = y [i] and x [i] = y. The instruction x= y [i] sets x to the
value in the location i memory units beyond location y. The instruction x [i] =y sets the
contents of the location iunits beyond x to the value of y.

11. Address and pointer assignments of the form x =&y x = *y, and * x = y.

Example 6.5 : Consider the statement

do i = i +1 ; w hi l e (a [i] < v) ;

Two possible translations of this statement are shown in figure below

L: t1=i+1

i=t1

 t2= i*8

 t3 =a[t2]

100: t1=i+1

 101: i=t1

102 : t2= i*8

103 : t3 =a[t2]

 if t3 < V goto L 104: if t3 < V goto

100

Figure Two ways of assigning labels to three-address codes

