

Scheme Of Evaluation Internal Assessment Test 1 – March 2019

Sub:	CONTROL SYSTEMS					Code:	15EE61		
Date:	05/03/2019	Duration:	EEE	Max Marks:	50	Sem:	VI	Branch:	EEE

Note: Answer Any Five Questions

Question #		Description	Marks Distribution		Max Marks
	a)	Differentiate open loop and closed loop control system with examples. • 4 differences, Each difference 1 mark • Example	1 *4=4M 1 M	05 M	
1	b)	What are fundamental components of mechanical rotational systems? Explain with equations • 3 elements • 3 equations with diagram	2M 3 M	05 M	10 M
2	a)	For the mechanical system shown in Fig 2 obtain the transfer function $X(s)/F(s)$ K B_2 B_1 B_2 B_1			
		 Free body diagram Differential equations Laplace transformation Final equations 	2M 3M 3M 2M	10M	10M
3	a)	Write the differential equations governing the following system shown in Fig 3 and obtain the analogous F-V circuit and F-I circuit.			

		Fig 3 Differential equations in time and frequency domain Analogous equations F-V circuit F-I circuit	4M 2M 2M 2M	10 M	10 M
4	a)	Write the differential equations governing the following system shown in fig 4 and obtain the transfer function $\Theta(s)/T(s)$ $\frac{T}{I_1} = \frac{\theta_1}{I_2} = \frac{\kappa_1}{I_2}$ Fig 4			1
		 Free body diagram Differential equations Laplace transformation Final equations 	2M 3M 3M 2M	10M	10 M
5	a)	Obtain the transfer function of the given network in the Fig 5 Fig 5 KVL equations in time and frequency domain Derivations and final result	6M 4 M	10M	10 M
6	a)	Using relevant equations obtain the mathematical model armature controlled dc motor. • Back emf equation • Torque equation	2M 2M		

	•	Load equation	2M		
		Transfer equation	2M		
	•	Block diagram	2M	10M	10 M