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1 |a. Differentiate open loop and closed loop control system with examples. 5 |CO1| L1
b. What are fundamental components of mechanical rotational systems? Explain with 5 |CO2| L1
equations
2  [For the mechanical system shown in Fig 2 obtain the transfer function X(s)/F(s) 10 |CO2| L3
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3 Write the differential equations governing the following system shown in Fig3 (10 CO2| L3
and obtain the analogous F-V circuit and F-I circuit.
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4 \Write the differential equations governing the following system shown in fig 4 10 CO2| L3
and obtain the transfer function ©(s)/T(s)
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Obtain the transfer function of the given network in the Fig 5 10 |CO2| L3
R, L
6 |Using relevant equations obtain the mathematical model armature controlled dc 10 |CO2| L2
motor.
Answers
la
Open-loop control system Closed-loop control system
1. The open-loop systems are simple and 1. The closed-loop systems are complex and
economical. costlier.
2. They consume less power. 2. They consume more power.
3. The open-loop systems are easier to construct 3. The closed-loop systems are not casy to
because of less number of components construct  because of more number of
required. components required.
4. Stability is not a major problem in open-loop 4. Stability is a major problem in closed-loop
control systems. Generally, the open-loop control systems and more care is needed to
systems are stable. design a stable closed-loop system,
5. The open-loop systems are inaccurate and 5. The closed-loop systems are accurate and
" unreliable. more reliable.
6. The changes in the output due to external 6. The changes in the output due to external

disturbances are not corrected automatically.
So they are more sensitive to noise and other
disturbances.

disturbances arc corrected automatically. So
they are less sensitive to noise and other
disturbances.

. The feedback reduces the overall gain of the

system,

The feedback in a closed-loop system may
lead to oscillatory response, because it may
over correct errors, thus causing oscillations

of constant or changing amplitude.




angular acceleration . The reaction torque 75 is equal 10 the produc, of 4
o 2

angular acceleration. That is
&g e
Ty =Jda=J 7z =J2 15,

where J = Moment of inertia, kg-m?
& = angular displacement, rad
Car = :—f = angular velocity, rad/sec
a?e ) =
o = 3z = angular acceleration, rad/sec

T3 = reaction torgue, N-m
reaction torque is egual to applied torque.

By Newton's second law,
Tr=17; (1.66)
a2
"T=Jdtz (1.67)

The elastic deformation of the body can be re i

< > > . presented by a spring constant.

When a torgue T" is a?plxed 10 a spring as shown in Fig. 1.27, it is twisted by an
angle €. The spring will produce an ©opposing torque ‘7" which is Proportionzal

to angular displacement
Tp o & (1.68) M
Tea

Th = %6 (1.69)
Fig. 1.27 A Spring (cne end fixed).

Where k is the spring stiffness constant.
By Newton’s second law

il (1.70)

placement. Thar is
Ty ox (61 — @2)
1.
e irc,
Miathematical Modeling 1,23
Using Newton’s law we have, %
T n», o,

= T =T, €1.74)
(1.75) Flg. 1.28 A spring (both ends frea).

ST = K0 — 0,)

Pamping occurs wht:n(:_vcr a body moves through a fluid. “The damping is

represented by a dash—qol with a viscous friction coefficient /2. Whenever » torgue

T is applied as shown in Fig. 1.29, it is opposed by the damping torgue T, which
and the angular velocity of the dash-pot

is equal to the product of 2
1i3
Ty o w (1.76) : : E

Bw and T = Ty 77 ¥ 0
i (1.78) Flg. 1.29 A Dash pot (one end fixed).

G = B = BZE
If both ends of the dash-pot are not fixed as shown in Fig. 1.30. then the

angular velocity is measured at both ends of the dash-pot

Ty = Bwy — w2) (1.79) I E3 :
@,

(w) (mg
[ -2] a0 T 8
Fig. 1.30 A Dash pot (Both ends free).

= Ty =

i » dd,y déy
..T—B[T——dt] (1.81)

Table 1.3 Variables and Parameters of Mechanical Rotational System.

Symbol Quantity Units
T(e) Torgue Newton-meter
dit) Angular displacerment radians
w(t) Angular velocity rad/sec
aft) Angular acceleration radfsec?
J Moment of inertia kg-m=~
I3 Suffness constant N-m/rad
|-—8 Damping-torque N-m/rad/sec




2

The free body diagram of mass M is shown in fig 2. The opposing forces are markea s &

ind f,. 7
f, =M£z—x v 58195' i =B i(x-x') fi2
m d‘z s bl dt dt ¢
By Newton's second law the force balance equation is, M L
£, +fy, + fip =R fu
Fig 2
d’x dx d
o M—dt—2+ BI ‘d—l+ B: a-t'(X" x;)’ itt)
On taking Laplace transform of the above eyuation wo get,
Ms? X(s) + B, s X(s) + By § [X(8) = X, ()] = F(&) p
¥

Ms? + (B, + B,)s| X(s)- B if_(f)—gp—w—'—‘—’—"-/f//
[ 1 2 ] 2 1 s ,,:,,Mwnmﬁ“_‘),ﬂ!eoﬂ’d

d L.

fua = Dy a‘l'(". X i =Kx, N

By Newion's second law. fi; +f =0 & 5=
-0

B,%(x, —x)+Kx, =0 fe

) Fig3
On tnking Laplace transform of the above equation we get,

B, s [X,(s) - X(s)] + KX, (5)=0

(B, s+ K} X,(s)-8B; s X(s) =0

e A2)

A Xy = g X(8)

Substituting for X, (s) from eguation (2) in equation (1) we get,

[M < +(B, + B,) s] X(s)-B, ’[E?:%E] X(s) = F(s)
[nes® +(B, +By)s1(Bz s+ Xy - (B, s)j

X(s) BossK = F(s)

X(.)_ B,sol(
F) DA 4 (B, = By) ) (B; 37 K) =By 8’

tESULT
The differential equations goveming the systems are,

. .
1. M:h—;‘-»a.%a 8,-:-;(x—x.)-rt:)

e Bz%(x.-x)rl(x,-o

The equations of mation in s-domain are,
1. [Ms® +(B, +B;)s] X(s) — By 5 X, (%) = F(s)
2 (B, s+ KIX,($)-B,5X()~0

The transfer functicn of the system is,
X(s) _ B,s+ K

F(s) [M3 +(B,+8,)s)(B;s+K) (B s)’
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d’x
fu =M,d' fn'Bl"(Jd_‘Q o =K, (%, = x;)

L
By Nev: . M; r\
y Nevrton's second law, £, + £, +£, =0 U
L
d “: ax, - x;) i
+B, 5 +K (X —%,)=0 o Fig 2

Thct‘reebodydmgrnmofM is shown in fig 3. mW"’Bfomm

narked as f_,, f,. wfu‘"‘”u 5
1)
d’x dx d E
fa=M,; dti ; fu=82_&1_; fm'Bl‘a"("r"‘l) ;,‘
r-’
fu = K,.\'z 3 fInl 7 K|(X) 3 xl) ”:'

Y

By Newton's second [aw, £+ fog # fog + fur + f,,.- (1) s

d"‘z i cii¥our S0 - ix—+K:K: +B, "(xz-xl)*"(l(xl_x'):‘u) """" @

T4l T od

On replacing the displacenments by velocity in the differential equations (1) amd (2) goveming the
mechanical system we get,

[i.e.. 9—-:'--‘1; d—\=-\ nnd\ﬁ-j“ll)

dr® ot Jde
wiv, .
M, T‘ By, = v )+ K f(v, = v, dt=0 A 3)
dv,
M. = +Bov, + K, IV.\“Q Il.(\' —\,)4' K j(v, — v, )dt e m) ..... 4y

 FORCE-VOLTAGE ANALOGOUS CIRCUIT

5 Thc given mechanical system has two nedes (masses). Hence the foree voltage snalogous clectrical
circuit will have two meshes. The force applied to mass, M, is represented by 2 voliage source in second
mesh. )

The elements M K| and B are connected to first node. Henee they are represented by analogous
clement in mesh 1 tormmg a closed path. The elements M, K., B,. B, il K, are connected 1o sccond
node. Heroe they are represented by analogous element in mﬁn 2 fonnmg a clmcd path,

The elements B, and K, are common between node t and 2 and so they are represemted as
common clements bc!\w:cn mcsh 1 and 2. The force-voltnge electrical analogous circuit is shown in fig 4.

The electrical annlogous elemems for the clements of mechanical system are given below.

i) =» e(t) v, = i M, = L, K, = VC, B, R,
vy, = 1 M, —» L, K, = VWC, B, —R,
| The mesh basis equations using KirchofT s voltage law for the circuit shown in fig 4 are given
| below (refer fig S and 6) o)
'i- L,
: R, 3w,

L, EE m m ]

il

T C,
Fio 4 » Farcewvaltove electrical analogous circult




FORCEACURRENT \L\AU)GO! S CIRCUTT
The given mechanical syster fas two nodes (masses ). Hence the fame—curm arabign o,
dus s =0 Sy et

circuit will have two nodes. The force applied 2o mass M. is repr

rode2 in analogows clectrical circwit.
The clements M, K, and B, are connected o fin node. Hercr they ure represcmed by ey,

elernents as elements comnected 1o node | is analognes elecinical circui. The slemenns M, L% '3
K, mmmwwmmtmmmmwwmumm
10 node | in analogous clectrical circwit

Thcdemcrxsx and B, is common t0 node 1 and 2 and so they are sepresentsd by el
Mmmom{nummmfmmm

<l as c el
.mlogvus circuit is shown in fig 7.
The clecirical analogous <! for the of mechanical system zre given below
K — 1A,

fit) —» W) v, -V, M B, — I/R,
Y7 Va MG B, — IR, K= 1L,
The node basis equations using KirchofT s current lew for the circull shown o 5z (7 =F
below [Refer fig (8) and (9)]-

C,.%'—o%;(v,—v,)*i[(v. ~wy)di=a0

c,‘-’d-‘:L4 R'Tv, - Juudt ‘R—l.(v’ -vy) o:'[(v, — vy )t - i1y
It is observed that the node basis equations (7) and (nmmﬂummaﬂmw
and (4) governing the mechanical system.

hd

[ tant L, e %n, % P B it

K

%]
3 L —wd 12

ing the Laplace transform of Lgs. (i) amd (ii) with zero initial conditions,
T(s)= S, 0, (5) + 2] 86, (5) = 3005)| + K10, (5) ~ K x))
Tis)=1(d,8" 4 284 K) 0 ()= (f25 + K ) 0(3) a
0=Jz.s’8(.t)+ [500)+ [i150(5) = sO, (5)] + K |Os5) - ,(5)]
(Lo87 4 f54 fras 4+ K)) Os) = (o854 K, ) G(5) =0

(15" + fs + fio5 4 K|) 8(s) P
I.'zs + K|
bstituting the value of G(s) from Eq. (iv) in Eq. (iii), we gel

T(s)= (113 +/|25+K )I-’L +(f+f12)5"‘x]_]0‘3) ‘fu."f'xﬂa-ﬂ
li2§+K|

0](5) =

Jidos + (Do fig + 1 + 336208 + (LK) + 1K, + iy, + )8
T(s)= + (2K fin + K S)s + K = £i75° = K = 205K gy
!.lz.\"" K'

T(s) [J D5 A fp + Iy + 10208 + Ky + DKy + 1) 80 +K'ﬁ}ﬁ5)
L2J+ Kl

Therefore, the transfer funclion is

LR /4:“‘“':
T Adydys® + Unliz + S + D fiz) 8 + (LK, + 1K) + M)+ KuS)




Loop I:

. di
E; = Ryt + L-‘-ﬂl + Ro(éy —i2) + é/(il — iz)dt (1.194)
Loop 2: :
. 1
R31,2+E./(i2—i1)dt+ﬂz(ia—fl)=0 (1.195)
Ep = Rais (1.196)

Taking Laplace transform of the equations by assuming zero initial conditions
on both sides, we have

Ei(s) = RiLy (s) + Lshi(s) + Rali(s) = Rala(s) + Elsj[h(-?) - In(s)]

(1.197)
Rali(s) + a-lla(s) — ()] + Rallols) = h(0)] =0 (1.198)
(1.199)

Eu(s) = Rala(s) ;
Ey(s) = Ii(s) [Rl Ry Lo ?:l:] ~ Is) [Rz 3 5.;]
0=-— (R¢+ 51;) Ii(s)+ (Rq+R2+-CL§)12(3)

Set of equations governing the system can be presented in & matrix form as fol-
lows;

-

Ri+Ro+Ls+gds —(Rates) }[11]=[3-‘(5)J
(+d) (R+Retd) LR ’
Simplifving Eq. (1.194), Eq. (1.195) and Eq. (1.196) we have,
Kl E:s) (R2 + CIE)
(By+Re+Ls+ &) (Rs+ R+ g5) — (RQ'*'Z':I?)z

F‘.".-‘.\‘ e Rj (R_) -+ Z};)
Bl (R+Rirle+d) (Rt R+ ) = (Ra+35)




s = karn — Kpwwo
a8
e Abdt (l.ls.:,

where
ky, — back emf constant
& — angular displacement (rad)

Applying Laplace transform with zero initial conditions vield

Epl(s) = kps8(=) (I.i85)
The differcential equation of the armature circuit is
€Ca — La %‘- + i + <2 (I I86)
Appliyving Laplace transform on both sides we =et
Ea(s) = sbhafal(s) + Rafa(s) + Es(s) (1.157)

The torgue developed by the motor 7 ahy is a function of the flux developed by the
field current and armature current. Since the field current is constans, the roogue

can be expressed as
Tar — Eyda (I.153)

where by — Torgue constant of the motor having units of N - m 7 A

=t Tae(s) = bria(s) (1189
Torgue T as drives the i E 3 "and::grve.nby
Tar — J‘% = B:—: (1.150)

= Tre(s) — Ts="O(s) + B=00(=)
From Eqg. (1_189) and Eq. {(1.190) we obtain

J_ao B:;f e C1.E90»
Taking Lapl e on bolh sades yviclds
2 Ts2o(s) + BsO(=) — gy T.(s)
O(s)[T== = Bs) o= kxfal=) €1.1927
A : 1193

substituting Eq. (1.193) and Eq.(1.185) in Eq. (1.187) yields
Eq(s) = (sLa + Ra) Sﬁ:rislou) + kys0(s)

24+B k
= 6(s) i(slm + R-)(Jsk: s} + 'rkw] (1:194)
8(s) Lz (1.195)

Fals)  JLos® + (Red + LaB)® + (RaB + kokr)s

D‘xvidinglhcmmm:nddumﬁnmby kuorwegct

f(s
Eus) . [Jla RaJ L-B) ( )]
(s) h,k-rsz + kbk-r e

(1.196)
8 TaTms® + (Tm + rT,)s +(r+1)]
R, RB

T LTt:" Tm =G’ 77 Tabr (1.197)

block d:agamoftbea:mannecontm!ladl)c motor is shown in Fig.1.84.

™ E.(') Eyls} — w0 -
- e L Ky | 5+8 -l
sl *
Eyfs) %

Fig. 1.84 Block diagram representation of 8 DG Moto.



