CMR
INSTITUTE OF
TECHNOLOGY

USN											
-----	--	--	--	--	--	--	--	--	--	--	--

Internal Assesment Test - II

internal Assesment Test - II												
Sub:	POWER SYSTEM (OPERATION	AND CO	NTROL				Code	e: 15EE81			
Date:	16/04/2019	Duration:	90 mins	Max Marks:	50	Sem:	8th	Bran	ich: EEE			
Answer Any FIVE FULL Questions												
							Marks	OBE				
									CO	RBT		
With a block diagram representation, explain tie-line bias control of a two area load frequency control.								[10]	CO4			
	2 Explain with block diagram modelling of Generator and Load.								[10]	CO4		
3(a)	Explain basic generate	or control loop	ps and cro	ss-coupling bety	ween co	ntrol loo	ps.		[07]	CO3	L2	
(b) Mention functions of AGC.									[03]	CO3	L2	
	Two machines operate								[06]	CO4	L3	
	machines are 200 MW and 500 MW. Each has a droop characteristic of 4%. Their											
	governors are adjusted so that frequency is 100% on Full Load. Calculate the load supplied by each unit and the frequency at this load. The system frequency is 50 Hz.											
									[04]	CO4	L3	
	(b) Determine primary ALFC loop parameters for control area having the following data. Total rated capacity, $Pr = 2000 \text{ MW}$; Inertia Constant, $H = 5.0 \text{ S}$; Frequency $f_0 = 50 \text{ M}$								[O+]	COT	LS	
l l	Hz, Normal Operating Load, $P_D = 1000$ MW.											
l l	A single area consists	•		llows:					[10]	CO4	L3	
	$G_1 = 200 \text{ MW}, R = 4\% \text{ (on machine base)}$											
	G2 = 400 MW, R = 5% (on machine base)											
	They are connected in parallel and share a load of 600 MW in proporition to their rating,											
	at 50 Hz. 200 MW of load is tripped. What is the generation to meet the new load if $D=0$. What is the frequency at new load? Repeat for $D=1.5$ pu.											
	D-0. What is the frequency	ancy at new i	заа. Корс	101 D = 1.5 p	u.							
6	Obtain an expression	for steady sta	te change	in system frequ	iency Δ f	s for a	step cl	nange	[10]	CO4	L2	
	in the load demand. Assume free governor operation.											