CMR INSTITUTE OF TECHNOLOGY

USN		
-----	--	--

Internal Assesment Test - II

Sub :	OPERATIONAL AMPLIFIERS & LINEAR ICS				Code:	17EE46		
Date:	20/04/201 9	Duration :	90 mins	l al	S e 4 th (A & n B)	Branch:	Ε	EE
	•		Answer any five o	uestions.				
					Marks	OBE		
						IVIAIKS	CO	RBT
1						10	CO6	L3
2	second order Low pass Butterworth filter with cut off frequency12 kHz. Explain the working of notch filter. Draw its frequency response.					10	CO6	L2
					10	CO6	L3	
3	Design a two stage wide band pass filter and band reject filter having f_t =200Hz					LS		
	and f_H =1KHz and pass band gain of 4.Calculate Q value and center frequency.							
	Assume capacitor values for high pass section=0.05uF and for the low pass							
	section=0.01uF.Draw the circuit diagram.							
							L3	
	supply increases regulation.	by 10%.Calcul	ate the load and source effect	s and the lo	oad and line			
					ns:	10	CO6	L3
	Output voltage Vo=5 to 12 v, output current Io=1 A. Voltage regulator is LM317.							
6	Explain the circuit of zero crossing detector and basic comparator.				10	CO6	L2	
7					10	CO6	L3	
	output waveforms and input output characteristics. For inverting Schmitt trigger							
	circuit R1= 100Ω ,R2= $56k\Omega$,Vin=+/- $15v$ Determine the threshold voltages Vut and Vlt .							
	petermine the threshold voltages variant vit.							

******All the Best****

Q.1

Example 12-1

Using a 741 op-amp, design the first-order active low-pass filter in Fig. 12-5 to have a 1.2 kHz cutoff frequency.

Solution

From Eq. 3-1

$$R_1 \approx \frac{70 \text{ mV}}{I_{\text{B(max)}}} = \frac{70 \text{ mV}}{500 \text{ nA}}$$

= 140 k Ω (use 120 k Ω)
 $R_2 \approx R_1 = 120 \text{ k}\Omega$

From Eq. 12-1

$$C_1 = \frac{1}{2\pi R_1 f_C} = \frac{1}{2\pi \times 120 \text{ k}\Omega \times 1.2 \text{ kHz}}$$
$$= 1105 \text{ pF} \quad \text{(use 1100 pF standard value)}$$

Second order low pass butterworth filter:

The frequency response of the 741 op-amp extends to almost 800 kHz for unity gain (see Fig. 5-9). The 741 should be suitable. Select

$$C_1 = 1000 \text{ pF}$$

From Eq. 12-5

$$R_2 = rac{1}{2\pi f_{
m C}C_1\sqrt{2}} = rac{1}{2\pi imes 12 \ {
m kHz} imes 1000 \ {
m pF} imes \sqrt{2}}$$

$$= 9.38 \ {
m k}\Omega \quad ({
m use} \ 4.7 \ {
m k}\Omega + 4.7 \ {
m k}\Omega)$$
 $R_1 = R_2 = 9.4 \ {
m k}\Omega$
 $C_2 = 2 \ C_1 = 2000 \ {
m pF}$
 $R_3 = R_1 + R_2 = 18.8 \ {
m k}\Omega \ ({
m use} \ 18 \ {
m k}\Omega \ {
m standard value})$

From Eq. 12-5

$$f_{C} = \frac{1}{2\pi\sqrt{R_{1}R_{2}C_{1}C_{2}}}$$

$$= \frac{1}{2\pi\sqrt{9.4 \text{ k}\Omega \times 9.4 \text{ k}\Omega \times 1000 \text{ pF} \times 2000 \text{ pF}}}$$

$$= 11.97 \text{ kHz}$$

The narrow band-reject filter, often called the *notch filter*, is commonly used for the rejection of a single frequency such as 60-Hz power line frequency hum. The most commonly used notch filter is the *twin-T* network shown in Figure 7–15(a). This is a *passive filter* composed of two T-shaped networks. One T network is made up of two resistors and a capacitor, while the other uses two capacitors and a resistor. The *notch-out* frequency is the frequency at which maximum attenuation occurs; it is given by

FIGURE 7-15 (a) Twin-T notch filter. (b) Active notch filter. (c) Frequency response of the

Unfortunately, the passive twin-T network has a relatively low figure of merit Q. The Q of the network can be increased significantly if it is used with the voltage follower as shown in Figure 7–15(b). The frequency response of the active notch filter of Figure 7-15(b) is shown in Figure 7-15(c). The most common use of notch filters is in communications and biomedical instruments for eliminating undesired frequencies. To design an active notch filter for a specific notch-out frequency f_N , choose the value of $C \le 1 \mu F$ and then calculate the required value of R from Equation (7-16). For the best response, the circuit components should be very close to their indicated values.

Q.3

Sr. No.	Active filter	Passive filter		
1.	It consists basic passive elements like resistors and capacitors along with active element like op-amp.	It consists only basic passive elements in resistors, capacitors and inductors.		
2.	It provides gain greater than unity.	It does not provide gain.		
3.	It can be fabricated into integrated circuit being inductor less.	As it is not possible to fabricate inductor, the passive filter is designed using discrete components.		
4.	As it can be obtained in IC form, the mass production is possible which makes it cheaper.	As only discrete components are used in the circuit, it is comparatively cheaper.		
5.	Being inductor less, mutual coupling problems are not observed. The ideal filter characteristic can be obtained easily.	At higher frequencies the problems of mutual coupling are dominant. It is difficult to obtain ideal filter characterist		
6.	The parasitic effects are observed.	No parasitic effects are observed.		

Follow the preceding design steps.

- 1. $f_H = 1 \text{ kHz}$.
- 2. Let $C = 0.01 \, \mu \text{F}$.
- 3. Then $R = 1/(2\pi)(10^3)(10^{-8}) = 15.9 \text{ k}\Omega$. (Use a 20-k Ω potentiometer.)
- 4. Since the passband gain is 2, R_1 and R_F must be equal. Therefore, let $R_1 = R_F = 10 \text{ kO}$. The same in Fig. $R_F = 10 \text{ k}\Omega$. The complete circuit with component values is shown in Figure 7-2(a).

- (a) A low-pass filter with $f_H = 1$ kHz was designed in Example 7-1; therefore, the same values of resistors and capacitors can be used here, that is, $R' = 15.9 \text{ k}\Omega$ and $C' = 0.01 \mu\text{F}$. As in the case of the high-pass filter, it can be designed by following the steps of section 7-3-1:
 - 1. $f_L = 200 \text{ Hz}$.
 - 2. Let $C = 0.05 \,\mu\text{F}$.
 - 3. Then

$$R = \frac{1}{2\pi f_L C} = \frac{1}{(2\pi)(200)(5)(10^{-8})}$$
$$= 15.9 \text{ k}\Omega$$

$$f_C = \sqrt{(1000)(200)} = 447.2 \text{ Hz}$$

$$Q = \frac{447.2}{100 - 200} = 0.56$$

Thus Q is less than 10, as expected for the wide band-pass filter.

Ripple Rejection

The ripple rejection is a measure of how much a voltage regulator attenuates the supply voltage ripple from the unregulated power supply. It is usually expressed in decibels. With a supply ripple of $V_{\rm rs}$ and an output ripple of $V_{\rm ro}$

Ripple rejection =
$$20 \log \left(\frac{V_{rs}}{V_{ro}} \right)$$
 (13-5)

Source Effect

The ac supply to the input of a transformer in a dc power supply does not always remain constant. A $\pm 10\%$ variation in the ac source voltage is not unusual, and this causes some variation in the dc output voltage from a regulated power supply. This output voltage change (ΔV_o) due to a supply voltage change is termed the source effect. If the output varies by 100 mV when the source voltage changes by $\pm 10\%$, the source effect is 100 mV. An alternative way of stating this output change is to express ΔV_o as a percentage of the dc output voltage (V_o). In this case, the term line regulation is used.

Source effect =
$$\Delta V_0$$
 for a 10% change in supply (13-1)

Line regulation =
$$\frac{(\Delta V_o \text{ for a } 10\% \text{ change in } V_S) \times 100\%}{V_o}$$
 (13-2)

Load Effect

Power supply output voltage is also affected by changes in load current (I_L). The output voltage decreases when I_L is increased and rises when I_L is reduced. The load effect defines how the output voltage changes when the load current is increased from zero to its specified maximum level ($I_{L(max)}$). If the load current change (ΔI_L) produces a voltage change (ΔV_o) of 100 mV, the load effect is 100 mV. As for the source effect, the load effect can also be expressed as a percentage of the output voltage. This is termed the load regulation.

Load effect =
$$\Delta V_o$$
 for $\Delta I_{L(max)}$ (13-3)

Lead regulation =
$$\frac{(\Delta V_{\rm o} \text{ for } \Delta I_{\rm L(max)}) \times 100\%}{V_{\rm o}}$$
(13-4)

load effect =
$$\Delta V_0$$
 for $\Delta I_{L(max)} = 20 \text{ V} - 19.7 \text{ V}$
= 300 mV

From Eq. 13-4

load regulation =
$$\frac{(\Delta V_{\rm o} \text{ for } \Delta I_{\rm L(max)}) \times 100\%}{V_{\rm o}}$$
$$= \frac{300 \text{ mV} \times 100\%}{20 \text{ V}}$$
$$= 1.5\%$$

From Eq. 13-1

source effect =
$$\Delta V_0$$
 for a 10% change in supply = 20.2 V - 20 V
= 200 mV

From Eq. 13-2

line regulation =
$$\frac{(\Delta V_{\rm o} \text{ for a } 10\% \text{ change in } V_{\rm S}) \times 100\%}{V_{\rm o}}$$

$$= \frac{200 \text{ mV} \times 100\%}{20 \text{ V}}$$

For the LM317, $I_{\rm ADJ}=100~\mu{\rm A}$ maximum. If we use $R_1=240~\Omega$, then for V_o of 5 V the value of R_2 from Equation (9–17b) is

$$5 = 1.25 \left(1 + \frac{R_2}{240} \right) + (10^{-4})R_2$$

I sh of the property of the same of 3.75° miles where the same voltage and $R_2 = \frac{3.75^{\circ}}{(5.3)(10^{-3})}$ and the same the different graphs of $R_2 = \frac{3.75^{\circ}}{(5.3)(10^{-3})}$ and $R_2 = \frac{3.75^{\circ}}{(5.3)(10^{-3})}$ and $R_3 = 0.71 \text{ k}\Omega$

Similarly, for $V_o = 12 \text{ V}$, the value of R_2 is

$$12' = 1.25 \left(1 + \frac{R_2}{240} \right) + (10^{-4})R_2$$

of or switching regulator, or switching regular in or of or or or switching regulators and said the constant specifical $\frac{10.75}{(5.3)(10^{-3})}$ is an industry of one or more externative externations for switching regulator act

FIGURE 9-48 Adjustable voltage regulator for Example 9-11.

8-3 ZERO-CROSSING DETECTOR

An immediate application of the comparator is the zero-crossing detector or sine wave-to-square wave converter. The basic comparator of Figure 8-1(a) or Figure 8-2(a) can be used as the zero-crossing detector provided that $V_{\rm ref}$ is set to zero ($V_{\rm ref} = 0$ V). Figure 8-3(a) shows the inverting comparator used as a zero-crossing detector. The output voltage v_o waveform in Figure 8-3(b) shows when and in what direction an input signal $v_{\rm in}$ crosses zero volts. That is, the output v_o is driven into negative saturation when the input signal $v_{\rm in}$ passes through zero in the positive direction. Conversely, when $v_{\rm in}$ passes through zero in the negative direction, the output v_o switches and saturates positively.

GURE 8-3 (a) Zero-crossing detector. (b) Its typical input and output waveforms.

Figure 8–1(a) shows an op-amp used as a comparator. A fixed reference voltage $V_{\rm ref}$ of 1 V is applied to the (-) input, and the other time-varying signal voltage $v_{\rm in}$ is applied to the (+) input. Because of this arrangement, the circuit is called the *noninverting comparator*. When $v_{\rm in}$ is less than $V_{\rm ref}$, the output voltage v_o is at $-V_{\rm sat}$ ($\cong -V_{\rm EE}$) because the voltage at the (-) input is higher than that at the (+) input. On the other hand, when $v_{\rm in}$ is greater than $V_{\rm ref}$, the (+) input becomes positive with respect to the (-) input, the v_o goes to $+V_{\rm sat}$ ($\cong +V_{\rm cc}$). Thus v_o changes from one saturation level to another whenever $v_{\rm in} \cong V_{\rm ref}$, as shown in Figure 8–1(b). In short, the comparator is a type of analog-to-digital converter. At any given time the v_o waveform shows whether $v_{\rm in}$ is greater or less than $V_{\rm ref}$. The comparator is sometimes also called a *voltage-level detector* because, for a desired value of $V_{\rm ref}$, the voltage level of the input $v_{\rm in}$ can be detected.

FIGURE 8-1 (a) Noninverting comparator and its input and output waveforms. (b) If $V_{\rm set}$ is positive. (c) If $V_{\rm ret}$ is negative.

FIGURE 8-4 (a) Inverting comparator as Schmitt trigger. (b) Input and output waveforms of Schmitt trigger. (c) v_o versus v_{in} plot of the hysteresis voltage.

age of the standard the standard of the standard of the standard of the standard of

In Figure 8-4(a), these threshold voltages are obtained by using the voltage divider $R_1 - R_2$, where the voltage across R_1 is fed back to the (+) input. The voltage across R_1 is a variable reference threshold voltage that depends on the value and polarity of the output voltage v_o . When $v_o = +V_{\rm sat}$, the voltage across R_1 is called the *upper threshold voltage*, $V_{\rm ut}$. The input voltage $v_{\rm in}$ must be slightly

more positive than $V_{\rm ut}$ in order to cause the output v_o to switch from $+V_{\rm sat}$ to $-V_{\rm sat}$. As long as $v_{\rm in} < V_{\rm ut}$, v_o is at $+V_{\rm sat}$. Using the voltage-divider rule,

$$V_{\rm ut} = \frac{R_1}{R_1 + R_2} (+V_{\rm sat})$$
 (8-1a)

On the other hand, when $v_o = -V_{\rm sat}$, the voltage across R_1 is referred to as the lower threshold voltage, $V_{\rm lt}$. $v_{\rm in}$ must be slightly more negative than $V_{\rm lt}$ in order to cause v_o to switch from $-V_{\rm sat}$ to $+V_{\rm sat}$. In other words, for $v_{\rm in}$ values greater than $V_{\rm lt}$, v_o is at $-V_{\rm sat}$. $V_{\rm lt}$ is given by the following equation:

$$V_{\rm lt} = \frac{R_1}{R_1 + R_2} \left(-V_{\rm sat} \right) \tag{8-1b}$$

Thus, if the threshold voltages $V_{\rm ut}$ and $V_{\rm lt}$ are made larger than the input noise voltages, the positive feedback will eliminate the false output transitions. Also, the positive feedback, because of its regenerative action, will make v_o switch faster between $+V_{\rm sat}$ and $-V_{\rm sat}$. In Figure 8-4(a), resistance $R_{OM} \cong R_1 \| R_2$ is used to minimize the offset problems.

more positive than V, in order-to cause the output it, to switch (NOITUJOS

For 741 the maximum output voltage swing is \pm 14 V, that is, $+V_{\text{sat}} = 14 \text{ V}$ and $-V_{\text{sat}} = -14 \text{ V}$. From Equations (8-1a) and 8-1b),

$$V_{\rm ut} = \frac{100}{56,100} \,(14) = 25 \,\mathrm{mV}$$

$$V_{\rm lt} = \frac{100}{56,100} (-14) = -25 \,\text{mV}$$

The output v_o waveform is shown in Figure 8-4(b). From Equation (8-2), the hysteresis voltage $V_{hy} = 50 \text{ mV}$.