

1.

Solution: Case value
\nLet (MVA) is = 25 MVA, and bar voltage ke 13.8 kV
\nin the generator *which*.
\nBase voltage on the number
$$
side = 13.8 \times 13.8
$$

\nBecause of greatest $sin(4x - 13.8) = 6.9k0$.
\n
$$
26.9k0
$$
\nReadance of greatest $sin(4x - 13.8) = 6.9k0$.
\n
$$
26.9k0
$$
\nReadance of the number T:
\n
$$
26.9k0
$$
\nReadance of the number T:
\n
$$
27 = 6.1
$$

Readrule of problems
\n $X dM'' = \int e^{0.2} \times \frac{25}{5} \times \frac{(6.9)^2}{(6.9)^2}$ \n
\n $= \int 1^{\circ} 0 \, \text{Pu}$ \n
\n $X dM' = \int e^{0.2} \times \frac{25}{5} \times \frac{(6.9)^2}{(6.9)^2} = \int 1^{\circ} 5 \, \text{Pu}$ \n
\n $= \int 0^{\circ} 0 \, \text{Pu}$ \n
\n $= \frac{6.9}{6.9} \times \frac{1}{2} \, \text{Pu}$ \n
\n $= \frac{6.9}{6.9} \times \frac{1}{2} \, \text{Pu}$ \n
\n $= \frac{38 \times 10^6}{\sqrt{3} \times 6.9 \times 10^2} = 2091.6 \, \text{A}$ \n
\n $= \frac{1}{\sqrt{3} \times 6.9 \times 10^2} = 2091.6 \, \text{A}$ \n
\n $= \frac{1}{\sqrt{3} \times 6.9 \times 10^2} = \frac{1}{\sqrt{3}$

C) Momentary current through breaker $A = 1.6 \times 1.4642.6$
= 23428.16 A. d) to compute the current to be intervalpted by the to compute the current seastance model is
breaker ; transient seastance model is
 $\overbrace{f_0^{*15} \quad \text{if } 0^{10}}^{\text{in}}$ the current to be interempted by the preaser of $\frac{1}{6}$ = $3x \frac{1}{\frac{1}{6}1.5}$ + $\frac{1}{\frac{1}{6}0.25}$ = $-\frac{1}{6}6$ P^{\prime} $d^{1.5}$ $d^{0.25}$ for d.c offset current
i $1.1 \times 6 \times 2071 = 13,805.88 \text{ A}$

2.

Solution: Letus choose a base 100 MVA, for Solution: Let us choose a base xv of 3840
the entire system 2 a base xv of 3840
in the overhead line. Base voltage on the generator side = $33 \times \frac{11}{33}$ = 11 KV. Base voltage on the cable - 300 $\frac{6-6}{2}$ x 3!

Recplane of Sewrobs A₁₁,
\nX61, new = X61, 014 x
$$
\frac{(Mv_0)_{B_1} x_{10}}{(Nv_0)_{B_1} 0.1} \times \frac{(k^y)_{B_1}^2}{(k^y)_{B_1}^2}
$$

\n
$$
= \int_{0}^{1.5} \frac{15x}{10} \times \frac{150}{10} \times \frac{113}{(11)^2} = \int_{1.5}^{1.5} \rho u
$$
\nReccheme of S₂°
\nX62, new = X612,01d × $\frac{(Mv_0)_{B_1} x_{10}}{(Mv_0)_{B_1} 0.1} \times \frac{(k^y)_{B_1}^2}{(k^y)_{B_1}^2}$
\n
$$
= \int_{0}^{1.25} \frac{k \frac{160}{10} \times \frac{112}{11^2}}{(k^y)_{B_1}^2} = \int_{1.25}^{1.25} \rho u
$$
\nReccharic of Ttransfanner T₁°
\nXT1, new = XT1,01d × $\frac{(Mv_0)_{B_1} x_{10}}{(Mv_0)_{B_1} 0.1} \times \frac{(k^y)_{B_1}^2}{(k^y)_{B_1}^2}$
\n
$$
= \int_{0}^{1.1} \frac{100}{10} \times \frac{\frac{332}{33}}{33} = \int_{0}^{1.0} \rho u
$$
\nRearbane of f transformor.
\n
$$
= \int_{0}^{1.1} \frac{100}{10} \times \frac{\frac{332}{33}}{33} = \int_{0}^{1.0} \rho u
$$
\n
$$
= \int_{0}^{1.0} 0.08 \times \frac{160}{6} \times \frac{\frac{332}{33}}{33} = \int_{0}^{1.6} \rho u
$$

The product of the 0H time:
\n
$$
Z_{0H} = Z_{TL}(A) \times \frac{(N\vee A)_{B,PLU}}{(kV)_{B}^{2}}
$$
\n
$$
= 30 \times (0.27 + j^{0.36}) \times \frac{100}{33}
$$
\n
$$
= 0.744 + j^{0.99} P \cdot U
$$
\n
$$
Z_{C} = Z_{C}(A) \times \frac{(N\vee A)_{B,PLU}}{(kV)^{2}A}
$$
\n
$$
= 3 (0.135 + j^{0.65}) \times \frac{100}{6.64}
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\nThe product implementation of 0.93 + j^{0.55} P \cdot U
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot U
$$
\n
$$
= 0.93 + j^{0.55} P \cdot
$$

To find
$$
\frac{2\pi i}{10}
$$

\nshopping the general voltage, equivalent circuit
\nof the system prior to the fault-
\n π
\n $\$

The put value of the fourth current.
\n
$$
T_{f} = \frac{V_{TH}}{Z_{TH}} = \frac{1.0 \underline{10^{3}}}{5.1 \underline{130.80}} = 0.1961.36
$$
\n
$$
T_{f} = \frac{V_{TH}}{Z_{TH}} = \frac{1.0 \underline{10^{3}}}{5.1 \underline{130.80}} = 0.1961.36
$$
\n
$$
= \frac{1.00 \times 10^{6}}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
= \frac{1.00 \times 10^{6}}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$
\n
$$
\frac{1}{\sqrt{3 \times 6.6 \times 10^{3}}} = 3747.4
$$

The field complexity power. Hence, the
\n
$$
1
$$
 times a 30.
\n 2 times the length of the 1 and 1 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 and 1 are the number of 3 and 1 are

Es Seq. imp of Symmatrical $\frac{7a}{2}$ I_b $\frac{2}{1}$ $2n$ $I_n = I_4 + I_6 + I_6$ V_0 ltage drofs V_{2} : Is $2 +$ In $2n$. $= I_{a}Z + (I_{a}+I_{b}+I_{c})Z_{m}$ $\pm(2+2n)$ + $I_6Z_7 + I_6Z_7$. V_b : $I_a Z_n + I_b (Z + Z_n) + I_c Z_n$ $V_c = I_a I_b + I_b I_b + I_c (I + I_b).$ Metrie form $\begin{bmatrix} 2+2h & \bar{2}h & \bar{2}h \\ 2h & 2+2h & \bar{2}h \\ 2h & \bar{2}h & \bar{2}+2h \\ 2h & \bar{2}h & \bar{2}+2h \end{bmatrix} \begin{bmatrix} \bar{1}_4 \\ \bar{1}_5 \\ \bar{1}_6 \end{bmatrix}$ Γ $2 + 2n$ $2n$ $2n$ \sqrt{a} V_b V_{C}

Expressing realtages and currents in seq. Components $\begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix}$ \mathbf{I} $2 + 2m$ $2n \n2m$ \mathcal{L} $1d \alpha^2$ $10^{2}d$ $212n2p$ $2m$ $\frac{1}{x}$ of $\frac{1}{x}$ $104²$ $2 + 2n$ $2m$ $\sum_{n=1}^{\infty}$ $2 + 3n$ \overline{O} \overline{O} $I_{\alpha, \alpha}$ \mathbf{z} \overline{z} I_{α} \mathcal{D} θ $\overline{2}$ 0 $Ta2$ Ő In symmetrical circuits. Currents of a given seg.
of the same sequence only produce realtage drop. $\sigma_{\!\!\!\!\beta}$ the $Seq.$ are uncoupled \sqrt{m} m closent \overline{a} Iai 21 $Z₂$ Ja2. o. \rightarrow $\sqrt{a_2}$ v_{α} \sqrt{a} Var Ref ve sog $+veseg.$ $2₀$ σ \overline{T} : V_{∞} Vao \mathbf{v} $\frac{y_{u2}}{x} \frac{y(\lambda_{a0} \tan^2 \sqrt{4} \lambda_{a1} \tan^2 \theta)}{x^2}$
= $\frac{y_{a0}}{x} \frac{\pi}{4} \frac{\lambda_{a1} \tan^2 \theta}{x}$ P.u power $g_{\rho\mu\,2}$

$$
3b
$$

$$
Spu = \sqrt{ac} I_{ac} \pi + \sqrt{a_1} I_{ca} \pi + \sqrt{a_2} I_{ac} \pi + (e_1 \pi + 2) (e_1 \pi + (e_1 \pi + 2)) (e_1 \pi + (e
$$

 $4\mathrm{a}$

 \mathbf{a}

Whine voltages of a star a les sequence realtages it is always meant phases Flaysequence on an equivalent star comme ched system d'estat connected system phase neellesse differs from het Va Phase Seg & ABCObe Vabelc Va, Vb, VC => Phasesy $V_{C,B} = V_{B}$ line realforce Voc, Vea, and Vab. V_b V_{bc} = V_{c} - V_{b} $\overline{v}c$ V_{bc} VA V_{ca} = $V_{a}-V_{c}$ $Vab = Vb - Va$ Let Vbc= VA (opposite to vertex A) $V_{ca} = V_B$ \mathcal{P} $m \rightarrow B$ $\overline{)}$ Varzve ($m = m$ $m = C$

$$
V_{A} = V_{6}c = V_{c} - V_{b}
$$
\n
$$
V_{B} = V_{ca} = V_{a} - V_{c}
$$
\n
$$
V_{c} = V_{ab} = V_{b} - V_{a}
$$
\n
$$
V_{c} = V_{ab} = V_{b} - V_{a}
$$
\n
$$
V_{c} = V_{ab} = V_{b} - V_{a}
$$
\n
$$
= \frac{1}{3} (V_{A} + X V_{B} + X^{2} V_{c})
$$
\n
$$
= \frac{1}{3} (V_{c} - V_{b} + X (V_{a} - V_{c}) + X^{2} (V_{b} - V_{a}) - \frac{1}{3} (V_{c} - V_{b} + X (V_{a} - V_{c}) + X^{2} V_{c}) - \frac{1}{3} (X - X^{2}) (V_{a} + X V_{b} + X^{2} V_{c}) - \frac{1}{3} (X - X^{2}) (V_{a} + X V_{b} + X^{2} V_{c}) - \frac{1}{3} (X - X^{2}) (X_{a} + X V_{b} + X^{2} V_{c}) - \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) (X^{3} + X^{3} V_{a})
$$
\n
$$
= \frac{1}{3} (X - X^{2}) (X^{3} + X^{3} V_{a})
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\n
$$
= \frac{1}{3} (X - X^{2}) X^{3} V_{a}
$$
\

The -ve seq. of line nottage is. $V_{A2} = \frac{1}{3} (V_{A} + \alpha^{2}V_{B} + \alpha V_{C}).$ $= \frac{1}{3} \left[(V_c - V_b) + \alpha^2 (V_a - V_c) + \alpha (V_b - V_c) \right]$ $= \frac{1}{3} \int \alpha^2 \left(v_{a} + \alpha^2 v_{b} + \alpha v_{c} \right) - \alpha \left(v_{a} + \alpha^2 v_{b} \right)$ = $\frac{1}{3} (a^{2} - a) (v_{a} + a^{2} v_{b} + a v_{c})$ = $\frac{1}{3}$ (-jJ₃) (, 3 Va2), $V_{A2} = -\frac{1}{d}\sqrt{3}V_{a2}$. ve seq. component of line no Hose in 53 to the negative." seg. comp. of phase no Hoyes lage the corresponding phase roottage by 90. $V_{A2} = \frac{1}{3} V_{A1} \alpha^2 V_{B1} dV_{C}$ $= \frac{1}{3}$ $(Vc-V_{b}) + \alpha^{2}(Va-Vc) + \alpha(Vb-Vc)$ $=\frac{1}{3}\int d^2 \left(V_a + a^2 V_b + a V_c\right)$ $\propto (\nabla_{a} + \alpha^{2}V_{b} + \alpha V_{c})$ $= \frac{1}{3} (d^{2}-d)$ $\sqrt{a+d^{2}V_{b}+dV_{c}}$ $=\frac{1}{3}(-\frac{1}{4}\sqrt{3})(\frac{2}{a^{2}})$ V_{A2} \hat{j} \hat{j} V_{A2} Finally the zoro seq. component of line volt $\frac{V_{A0}}{3}$ $\frac{1}{3}$ $\left(\frac{V_{A} + V_{B} + V_{C}}{V_{A} + V_{C}}\right)$ $-\frac{1}{3}$ $(V_{c}-V_{b}) + (V_{a}-V_{c}) + (V_{b}-V_{a})$ VAO = 0. = 7 Zeroseg. Component of

4b

The magnetic sequence, Lira voltage is
\n
$$
V_{A1} = -j\sqrt{3}Var_{1} = \sqrt{3} \times 60 \left(60^{2} - 90^{3}\right)
$$
\n
$$
= 103.92 \left(-30^{6} \text{ V} - \left(90 - j57.96\right) \text{ V}\right)
$$
\n
$$
= 103.92 \left(-30^{6} \text{ V} - \left(90 - j57.96\right) \text{ V}\right)
$$
\n
$$
= 103.92 \left(-30^{6} \text{ V} - \left(90 - j57.96\right) \text{ V}\right)
$$
\n
$$
= 204.42 \left(-10^{6} \text{ V}\right)
$$
\n
$$
= 212.72 \left(-10^{6} \text{ V}\right)
$$
\n
$$
= 24.42 \left(-10^{6} \text{ V}\right)
$$

$$
v_{G} = V_{A0} + \alpha^{2}V_{A1} + \alpha V_{A2}
$$

= 411.7 /14.62° V.

$$
V_{C} = V_{A0} + \alpha V_{A1} + \alpha^{2}V_{A2}
$$

-158

 $X \oplus Z$
 $Y \oplus Z$
 Y
 Y
 Y
 Y
 Y 5. $\begin{array}{c}\n\overline{13}\\
\overline{2}2\end{array}$ $TL \boldsymbol{\mu}$ $\frac{1}{2}$ λ ϵ
 ϵ
 ϵ $TL - B$ $\frac{1}{2}$

Base value
\nBase power for the confusion line = 220 k1.
\nBase voltage on the transmission lines = 220 k1.
\n
$$
\frac{1}{2000}
$$
 = 11 k1.
\n
$$
\frac{1}{200}
$$
 = 6.6 k1.

 $\ddot{}$

$$
\frac{Reactance}{X_{1}=X_{2}=j0.2\times\frac{(Mv_{A})_{B,nu}}{(Mv_{A})_{B,old}}}\times\frac{kv^{2}a,old}{kv^{2}a,new}}{2}=\hat{j}^{0.2}\times\frac{200}{104}\times\frac{11.6^{2}}{11^{2}}=\hat{j}^{0.44}P^{\prime\prime}
$$

 $\ddot{\cdot}$

$$
X_{0} = j_{0} \cdot 1 \times \frac{200}{104} \times \frac{11.8^{2}}{11^{2}} = j_{0} \cdot 22.9^{2} \text{ m.}
$$

\n
$$
R_{t,0} = \frac{1}{N_{1}} = X_{0} = j_{0} \cdot 1 \times \frac{200}{185} \times \frac{11.2}{11^{2}} = j_{0} \cdot 16.9^{2} \text{ m.}
$$

\n
$$
X_{1} = X_{2} = X_{0} \times \frac{200}{185} \times \frac{10.12}{11^{2}} = j_{0} \cdot 16.9^{2} \text{ m.}
$$

\n
$$
= j_{0} \times \frac{200}{220^{2}} = j_{0} \cdot 124.8 \text{ m.}
$$

\n
$$
X_{0} = j_{0} \times \frac{200}{220^{2}} = j_{0} \cdot 124.8 \text{ m.}
$$

\n
$$
X_{0} = j_{0} \times \frac{200}{220^{2}} = j_{0} \cdot 124.8 \text{ m.}
$$

\n
$$
X_{1} = X_{2} = X_{0} = j_{0} \cdot 12 \times \frac{200}{120} \times \frac{230^{2}}{220^{2}} = j_{0} \cdot 22.8 \text{ m.}
$$

\n
$$
R_{t,0} = \frac{1}{N_{t,0}} = \frac{1}{
$$

Positive Sequence Network (PSN) 30.124 $f^{0.22}$ $d^{0.16}$ $\frac{1}{2}$ j 022 $J^{0.124}$ d^{644} X_{n} $J^{0.341}$ E_{N1} Reference Bus. Sequence Network (NSN).
jois 1 m x_1 Negative $\frac{1}{20.124}$ $f1.22$ E_c z $j^{0.16}$ j^{i+1} $j_{0.44}$ ξ $j_{0.124}$ 300.342 Zero Sequence Natural (ZSN) X j 0.16. $j_0.248$ $j_0.22$ 12.248 $j_{0.22}$ $\frac{m}{d^{0.16}}$ $J^{0.22}$

 \mathcal{S}

Re

forence.

 6_b

Solution $\frac{a}{b} = -Ic = \frac{100kVA}{23.33A}$ \mathcal{L} $I_4 = 0$ I_0^c A $T_c = -33.33$ 4° $A = 33.33$ 480° A $I_b = 33.33 C^0 A$

Symmetrical components of line currents: $T_{40} = \frac{1}{3} (T_{4}T_{4}T_{4}T_{2}).$ $=\frac{1}{3}(6+93.93-93.95)=0.4$ $I_{04} = \frac{1}{3} \left(I_{0.} + 0. T_{b.} + a^{2} I_{c} \right).$ $= 15.24 \int 9^{5} A$ $\tau_{a1} = \frac{1}{3} (\tau_{a+1}^{\alpha} \tau_{b+1} \tau_{c}).$ $=$ $\frac{1}{2}$ (0 + 33.33 $\frac{196}{40}$ + 33.33 $\frac{1860}{4}$). = 19.24 (-90°) A

Solution: Case power = 25 MVA;
\nBox will get of T.L = H~~X~~ + 10-6
\n
$$
m = n
$$
 of motion: 123.24 × 10.8 = 11 KV.
\n
\n $m = n$ of motion: 123.24 × 10.8 = 11 KV.
\n
\n $m = 0$ of motion: 123.24 × 10.8 = 11 KV.
\n
\n $m = 0$ of motion: 123.24 × 10.8 = 11 KV.
\n
\n $m = 1$
\n 1×10^{-8} = 11 KV.
\n
\n $m = 10^{-1}$ N = 25 × 10⁻¹ N = 100 × 10⁻¹ N = 10⁻¹ N =

Zero seg-reactance of gen and motors. i

 $10.06 + j^{155}$ 2010 $\int_0^1 0.0 \int_0^1 43x 2.5 \times \frac{2.5}{11^2}$ $\widehat{(\overline{z})}$ \overline{z} positive seg. network $\left(\rho_S N\right)$ \mathcal{P} γ $d^{0.08}$ γ n j_0, b $f0.08$ $j^{0.69}$ E $30.34 - 5$ Ę $j_{0.5}$ $EM₂$ h EMI Eay $\mathcal{V} \rightarrow \mathcal{V}$ $\mathbb{E}(\mathcal{M}_{\mathbf{X}}^{\mathcal{X}})_{\mathbf{X} \sim \mathcal{D}} \mathbb{P}^{(\mathbf{X} \sim \mathcal{X})} \triangleq \mathbb{P}^{\mathcal{X}}$ $1, 2$ $\overline{}$ NSN $f_{0,16}$ $\gamma\gamma$ α 6.08 30.06 $j_{0.69}$. $\frac{1}{2}$ $j_{0.34}3$ $\dot{d}^{0.2}$ \tilde{X}_I $28 - 54$ $\bar{\pm}$ / ZSN γ $j^{0.08}$ $j_{0:49}$ $10.08.$ 6.06 3006 ţ, ϵ **POUR** \int_{0}^{1} 1.55 $\sqrt{3}$ 13.78 $\begin{array}{c} \mathbf{J} \rightarrow \mathbf{J$ \mathbb{R}_{ℓ} \mathcal{A} \mathcal{O} $\epsilon_{\rm s}$