

1.

Thermal Model of Motor for heating and Cooling Assume m1c lo be homogeneous body and
cooling medium has the following farameters cooling medium at time t. at time t.
 p_1 - heat developed watts/joulis/sec.
 p_2 - heat disimpated to the cooling medium (watts)
 $w =$ weight of the active parts of machine kg.
 $h =$ Specific heat, Joulis per kg per c.
 $A =$ Cooling surface, A = cooring sauges, mal transfer or
d1 - co-efficient of heat dimpation, jouls / rec/rde 0 - mean temp rise, °C

$$
f_{\text{red}} \text{ absorbed} = \text{Heat developed} - \text{Heat divided} + \text{head} \text{div} \text{rad}.
$$
\n
$$
f_{\text{red}} \text{d}x \text{ch} \text{op} = \text{total} \text{ab} \text{co} \text{ch} \text{od} + \text{head} \text{div} \text{d}x \text{d}
$$

both steady solid in haecour.

\nhad gen = hat dimipatud

\n
$$
b_1 \neq f = \frac{e}{3}
$$
\n
$$
\frac{b_1}{\frac{d_1}{d_1}} = \frac{b_1}{\frac{b_1}{d_1}} = \frac{b_1
$$

$$
0s_{S}-0=\frac{0s_{S}-0i}{t/\tau}
$$
\n
$$
0s_{S}-0=\frac{0s_{S}-0i}{t/\tau}t
$$
\n
$$
0s_{S}-0=\frac{0s_{S}-0i}{-t/\tau}e^{-t/\tau}
$$
\n
$$
0s_{S}-0=\frac{0s_{S}-0i}{-t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0s_{S}-0s_{S}-t}{t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0s_{S}-0s_{S}-t}{t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0}{\pi}e^{-t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0}{\pi}e^{-t/\tau}e^{-t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0}{\pi}e^{-t/\tau}e^{-t/\tau}e^{-t/\tau}
$$
\n
$$
0=\frac{0}{\pi}e^{-t/\tau}e^{-t/\
$$

2. Over loading factor k:

Determination of motion radius:

\nShort Time Dory.

\nOpor

\n
$$
6 + 2
$$
\n
$$
6 + 3
$$
\n
$$
6 +
$$

Under the following equations:

\n
$$
\begin{array}{rcl}\n\text{1.1} & \text{1.2} & \text{1.3} \\
\text{2.1} & \text{1.4} & \text{1.5} \\
\text{2.1} & \text{1.5} & \text{1.6} \\
\text{3.1} & \text{1.6} & \text{1.6} \\
\text{4.1} & \text{1.6} & \text{1.6} \\
\text{5.1} & \text{1.6} & \text{1.6} \\
\text{6.1} & \text{1.6} & \text{1.6} \\
\text{1.7} & \text{1.6} & \text{1.6} \\
\text{1.7} & \text{1.7} & \text{1.6} \\
\text{1.7} & \text{1.7} & \text{1.7} \\
\text{1.7} & \text{
$$

LATERMITTENT PERIODIC DUTY

Equivalent T, current and P method cannot be employed where speed changes in wide limits.

Consider a simple inta -mittent load, where the motor is alternately subjected to a fleech magni--tude of p_x road directionts > and standstill cond of too duration to

$$
W_{1} \times T_{1} = \theta_{50} (1 - e^{-t\lambda}/T) + \theta_{1} e^{-t/\tau} = 0
$$
\n
$$
W_{2} \times T_{1} = 0
$$
\n
$$
W_{3} \times T_{2} = 0
$$
\n
$$
W_{4} \times T_{3} = 0
$$
\n
$$
W_{5} \times T_{4} = 0
$$
\n
$$
W_{6} \times T_{5} = 0
$$
\n
$$
W_{7} \times T_{6} = 0
$$
\n
$$
W_{8} \times T_{9} = 0
$$
\n
$$
W_{1} \times T_{1} = 0
$$
\

$$
\begin{array}{lll}\n0 & -t_{1} & -t_{1} \\
0 & 0_{35} & (1 - e^{-t_{1}}) + 0_{2} & e\n\end{array}
$$
\n
$$
\theta = 1\pi \left(1 - e^{-20/b_{0}}\right) + 0_{2} & e^{-20/b_{0}}.\n\n40 = 4 \cdot 2\pi + 0_{2} (0.7 + 16) and 0 = 40\n61 = 4 \cdot 2\pi + 0_{2} (0.7 + 16) and 0 = 40\n62 = 3\pi \cdot 7\pi\n63 = 49.93c\n64.0\n65 = 62, b_{02} and the number of solving the string coupling\n
$$
\theta = 0_{2} & b_{02} & \text{mean temp during heating} \text{heating}
$$
\n
$$
\theta = 0_{2} & b_{02} & \text{mean temp during heating} \text{heating}
$$
\n
$$
\theta = 0_{3} & b_{03} & \text{mean temp during heating} \text{heating}
$$
\n
$$
\theta = 0_{3} & b_{03} & \text{mean temp during heating} \text{heating}
$$
$$

3 b

$$
F_{L} = A_{\alpha}t_{\alpha}d \t F_{L} = v - i\alpha R_{\alpha} = 800 - 1000
$$
\n
$$
F_{L} = 191V, N_{L} = 815 \text{ A/m}. \t F_{R} = 800 - 1000
$$
\n
$$
F_{R} = 8 \times 2 \text{ N/s} = 750 \text{ A/m}. \t F_{R} = 163.71 \text{ V}
$$
\n
$$
F_{R} = E_{I} \frac{N_{L}}{N_{I}} = 191 \times \frac{750}{815} = 163.71 \text{ V}
$$
\n
$$
\frac{3V_{m}}{V_{m}} \cos \alpha = V_{\alpha}
$$
\n
$$
V_{\alpha} = E_{\alpha}t_{\alpha}R_{\alpha} = 163.71 + (150 \times 0.66) = 173.71
$$
\n
$$
V_{\alpha} = E_{\alpha}t_{\alpha}R_{\alpha} = 163.71 + (150 \times 0.66) = 173.71
$$
\n
$$
V_{R} = \frac{3V_{m}}{V_{R}} = 163.71 + (150 \times 0.66) = 173.71
$$
\n
$$
V_{R} = \frac{173.71}{8} = 0.871
$$
\n
$$
V_{R} = \frac{173.71}{8} = 0.871
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 161 \times \frac{1}{16} = 100.14
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 161 \times \frac{1}{16} = 100.14
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 100.14 \text{ (m)}
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 100.14 \text{ (m)}
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 100.14 \text{ (m)}
$$
\n
$$
V_{R} = E_{\alpha}t_{\alpha}R_{\alpha} = 10
$$

$$
\left(\begin{matrix} \overrightarrow{v} \\ \overrightarrow{v} \end{matrix}\right) \quad \alpha = \begin{matrix} l_{\alpha} \\ l_{\beta} \end{matrix},
$$

l

(iii)
$$
\alpha = 166
$$
,
\n $\frac{QV_{m}}{T}$ cos $\alpha = V\alpha$
\n $V\alpha = \frac{g(31.13)}{T!}$ cos 160 = $-\frac{186.12V}{T}$.
\n $E_{2} = \frac{186.12 - (150 \times 0.06)}{T!}$
\n $E_{3} = \frac{186.12 - (150 \times 0.06)}{T!}$
\n $E_{4} = \frac{186.12 - (150 \times 0.06)}{T!}$
\n $E_{5} = \frac{186.12 - (150 \times 0.06)}{T!}$
\n $E_{6} = \frac{186.12 - (150 \times 0.06)}{T!}$
\n $E_{7} = \frac{-185.126}{T!}$

Continuous mode	if																
$V_0 = V_m$ $\epsilon_m^2 w^T$	$\frac{1}{11} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} V_0 \, dv \, dv$	<															

$$
Va = \frac{1}{\pi} \left[\int_{\alpha}^{B} va + \int_{\alpha}^{T+1} E \right] d\omega t
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{B} v_{m} \sin \omega t \, du t + \int_{\alpha}^{T+1} E \, du \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} v_{m} \sin \omega t \, du t + \int_{\alpha}^{B} E \, du \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (w^{+1}) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n
$$
= \frac{1}{\pi} \left[\int_{\alpha}^{T} (cos \omega t) + E \, (cos \omega t) \right]
$$

\n $$

$$
w_m = \frac{v - \int_a^b R a}{k}
$$

$$
W_{m} = \frac{V - i aRa}{k}
$$
\n
$$
= \frac{V_{m} (cos \alpha - cos \beta) + (Tr + \alpha - \beta)E}{\pi k} - \frac{inc \alpha R}{k}
$$
\n
$$
W_{m} = \frac{V_{m} (cos \alpha - cos \beta) + (Tr + \alpha - \beta)Kwm}{\pi k} - \frac{RaT}{k^{2}}
$$
\n
$$
W_{m} = \frac{mc \left(\cos \alpha - cos \beta\right) + (Tr + \alpha - \beta)Kwm}{\pi k} - \frac{Re \overline{T}}{k^{2}}
$$

- de vous de 20 obtained from fixed ac. Chopper Le variable de metres de motor opper control of the motoring
Regenerative braning
Motoring and regenerative braning!
Dynamic braning Puly since and ↟ $\ddot{\tau}$ \hat{r} \ast

Dharing Kegenerative \mathcal{D} $\int_{1}^{\sigma} G$ \mathfrak{c} . Energy Storage interval >When \overline{a} is on $\overline{(o_{\leq t\leq ton})}$, the o/p voltage $\frac{e}{10}$ - zero. $v_0 = v_0 = 0$. > Though $va = 0$, voitage E drives current this La and Ta . → La stores energy during ton. \Rightarrow ia λ from ia, to $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Duty interval : $(t_{on} \leq t \leq 7)$ > When \mathscr{C} Th is off, $\mathsf{V}_{\mathsf{0}} = \mathsf{E} + \mathsf{La} \frac{d_{\mathsf{0}}}{dt} = \mathsf{V}$ $.1$ Nd χ VBI bcoz of this, I is forward biased and begins conduction, thus allowing and \Rightarrow ia flows thro D, and source v and reduces from ios to la,

Multi-guadrant operation of separately fed from de motor α cred controlled rectigier a) 10 fully controlled rectifier with α revering switch b) Dual connecter
c) 16 fully controlled reclipier in the armature
with field current revensal.
with field current revensal. with field current - quadrait I & I Hully controlled sectiffer with a neversing cuprer come
-> Revening switch Rs is
used to revense the an
example tion w.r.t to great switch in arm Switch a used to reverse to greatified $\overset{\mathtt{u}}{_{l}}\mathtt{a}$ \Rightarrow fcc \Rightarrow I and IV Vc^{-1} $d290$ The reversal of armature connection provides II and. II quadrant aggo $\frac{6}{10}$ 《翅》 $-va$

6

The switch can be selay - operated contactor with 2 normally No and NC closed contactors. (fi 0_k

 $N0 - a - F - M - F - b \rightarrow TS\bar{v}$ gelay operates NC $R - M - R - b$.

 $TF-ON(T_{R-OFF}) - Jg\overline{Y}$ T_{R-ON} (T_{F-OFF}) - $\overline{10}$ & $\overline{11}$

 D ual Converter:-

$$
32 \text{ fully confused coordinates connected in\nanti-paault acoos the armature\n→ Rectifer A - the current and +va and -va\n∴ I and II quadrant\n→ Rectifer B - -ve current and +va and -va.\n∴ In and II quadrant\n∴ In and II quadrant\n
$$
\frac{1}{2}
$$
 and
$$
\frac{1}{2}
$$
 quadrant
\n
$$
\frac{1}{2}
$$
 =
$$
\frac{1}{2}
$$

\n
$$
\frac{1}{2}
$$
 =
$$
\frac{1}{2}
$$
$$

Four quadrant drive with field reversal * With If is one direction, -> Quadrants I and $\frac{W}{L}$
* When If is severed -> Quadrants I and III Quadrants II and ! The dual converter operates with non-simultaneous control.

 $7a$ $\bar{\gamma}$

A	down	down	to be	proportional	to	(power)
$Q = 0$	$k = \sqrt{\frac{1 + \alpha}{1 - e} - \alpha}$	$P_A = R$				
$R = \sqrt{\frac{1}{1 - e} - \frac{\tan}{\pi}} = 2.55$	$R = P$					

Model, Kaling =
$$
\frac{100K}{2.66} = 39.21km
$$
. V_2

\n(i) $K = (1 + \alpha)$ 1- $e^{\frac{t\alpha}{\sqrt{5}} + \frac{t\alpha}{\sqrt{5}}}$ - α)

\n(ii) $K = (1 + \alpha)$ 1- $e^{\frac{-t\alpha}{\sqrt{5}}/5\alpha}$ 1- α)

\n $= \frac{1}{\sqrt{5}} \left(\frac{1}{1 + \alpha} \right)$

\n $= \frac{$

- turned * SCRS T1, T3 and T5 form a tre george arc¹ tre when the supply voltages On SCRS TA, T6 and Ta form a regroup turned on when the supply rollages are If only a single gate palse is used, no
current will glow, as the other scr in the current path will be in the off state.
Hence in order to start the cret functioning a thyriticis must be gived at the same
time is order to commence current glow, one
of the upper arm and one of the lower the lower an 1 alm.
	- 1) Each divice should be triggered at a desired fining angle x
	- 8) Each scr can conduct for 120.
- 3) SCRS must be triggered in the sequence T_1 , T_2 , T_3 , T_4 , T_5 and T_6

phase shipt blw the ~ 60 adjacent sees k hould two SCRs 5) At any instant, such paus 6 conduct and there are pairs_c and (b) Each SER conducts in $2A$ 5 ್ಡಿ pair conducts go n 00. $\frac{1}{2}$ outgoing Lood conducting voltag evt Incoming $S.NO$ SCR \int_{1}^{0} oltage) V_{AB} 76 76.71 τ_{τ} **即 30+火** ı T_{1} $T_1 - 52$ VAC 72 $90+$ α $\overline{2}$ V_{BC} 72 $T2 - 13$ $7₃$ $150 + x$ 3 VBA T_3 $73 - 74$ T_{4} $210 + 1$ $\overline{4}$ VcA $T4$ $T_A - T_S$ $\tau_{\textit{s}}$ $270 + 8$ 5 $\sqrt{15}$ VCB $330 + 1$ $T G$ 6 $75 - 76$

are connecting When 2 SCRA one from the and one from the group, the corresponding Pine vottage is applied

 $x + 90$ VAB dwt $V = 6$ $2\overline{1}$ 430 $d+90$ (BVme sin (wt +30) dust $4 + 30$ $x + 90$ $= 3 \frac{\sqrt{3} \text{Vm1}}{\pi} \left[-\cos(\omega t + 30) \right]$ $8 + 30$ = $3\sqrt{3}Vml$ $-cos\left[4+120\right]+cos\left(4+60\right)$ = $3\sqrt{3}\text{Vm}$ $\left(-\cos(60-x) + \cos(60+x)\right)$ = $3\sqrt{3}VmR$ $\int cos(60-x) + cos(60+x)$ $=3$ $\frac{\sqrt{3}}{2}$ \sqrt{m} \times 2 \cos 60 \cos \times 77 $: 06660$ $=$ g (g) $Vm\ell$ $cos\alpha$