USN					

Internal Assessment Test II – May 2019

Sub:	Engineering Physics Theory					Sub Code:	18PHY22	Branch:	EC, E	E, ME	
Date:	14-05-2019	Duration:	90 min's	Max Marks:	50	Sem / Sec:	II –I,J,K,	L,M,N & O	OF	BE.	
	Answer any FIVE FULL Questions Given: $k = 1.38 \times 10^{-23}$ J/K; NA = 6.02 x 10 ⁻²⁶ /K mole; $m_e = 9.1 \times 10^{-31}$ kg; $e = 1.602 \times 10^{-19}$ C; $\epsilon_0 = 8.854 \times 10^{-12}$ F/m						'm MA	ARKS	СО	RBT	
1 (a)	Derive an expre	ession for Fer	mi energy (E _F) at 0 K for meta	ls.				[7]	CO5	L3
(b)	Calculate the p 300 K.	robability tha	t an energy le	evel at 0.2 eV be	elow t	he Fermi leve	el being occupie	ed at	[3]	CO5	L3
2 (a)	Obtain the expr	ression for Ha	ll voltage and	Hall coefficient.					[7]	CO5	L3
(b)	Discuss the dep	endence of F	ermi factor (f(E)) on temperatu	ıre.				[3]	CO5	L3
3 (a)	Discuss briefly equation.	internal fiel	d in dielectri	c materials and	hence	e derive the	Clausius - Mos	ssotti	[7]	CO5	L3
(b)			_	nic density 2.5x1 as is subjected to				ipole	[3]	CO5	L3
4 (a)	Derive the relat	ion between l	Fermi energy	and energy gap fo	or an	intrinsic semio	conductor.		[7]	CO5	L3
(b)				nium semicondu mobilities are 0.					[3]	CO5	L3

PTO

USN					

Internal Assessment Test II – May 2019

Sub:	Engineering Physic	cs Theory				Sub Code:	18PHY22	Branc	h: EC	E, EE, ME	
Date:	14-05-2019	Duration:	90 min's	Max Marks:	50	Sem / Sec:	II- I,J,K,	L,M,N &	0	OI	BE
	Answer any FIVE FULL Questions									CO	RBT
	Given: k = 1.38 × 1	1.0^{-23} J/K; $N_A = 6$	1.02×10^{26} /K mc	ole; $m_e = 9.1 \times 10^{-31} k$:g; e=	= 1.6×10^{-19} C; ϵ_0	= 8.854 X 10 ⁻¹² F/m		MARKS	\$	
1 (a)	Derive an expre	ession for Fer	mi energy (E _F) at 0 K for meta	ls.				[7]	CO5	L3
(b)	Calculate the probability that an energy level at 0.2 eV below the Fermi level being occupied at 300 K.						[3]	CO5	L3		
2 (a)	Obtain the expr	ession for Ha	ll voltage and	Hall coefficient.					[7]	CO5	L3
(b)	Discuss the dependence of Fermi factor $(f(E))$ on temperature. [3]						CO5	L3			
3 (a)	Discuss briefly internal field in dielectric materials and hence derive the Clausius - Mossotti equation. [7]						CO5	L3			
(b)	If the dielectric constant of a gas of atomic density 2.5×10^{25} /m ³ is 1.00074, calculate the dipole moment induced in each atom when this gas is subjected to an electric field of 15 kV /m.						[3]	CO5	L3		
4 (a)	Derive the relation between Fermi energy and energy gap for an intrinsic semiconductor.						[7]	CO5	L3		
(b)				nium semicondu mobilities are 0.					[3]	CO5	L3

PTO

5 (a)	Derive an expression for the conductivity of an intrinsic semiconductor.	[6]	CO5	L3
(b)	Calculate the Hall voltage produced in a cube shaped semiconductor (side length = 5mm) carrying 3 mA current, when subjected appropriately to the magnetic flux density of 2 weber/m ² . Given that carrier concentration of the semiconductor is $1.7 \times 10^{22} / \text{m}^3$.	[4]	CO5	L3
6 (a)	State Hooke's Law of elasticity? Explain briefly the various factors affecting elasticity.	[5]	CO1	L2
(b)	Show that shear strain is equal to the sum of elongation strain and compression strain.	[5]	CO1	L3
7 (a)	Define lateral strain coefficient (β), linear strain coefficient (α) and hence derive an expression for rigidity modulus (η) in terms of β and α .	[7]	CO1	L3
(b)	Discuss the limiting values of Poisson's ratio.	[3]	CO1	L2
8 (a)	Derive the relation between bulk modulus (K), Young's modulus (Y) and Poisson's ratio, hence obtain the relation between K, Y and η .	[7]	CO1	L3
(b)	Calculate the final volume of the spherical 10 cc (ml) water droplet, if it is compressed uniformly by the stress $20.5 \times 10^{15} \text{ N/m}^2$. (Bulk modulus of the water is $0.2 \times 10^{10} \text{ N/m}^2$).	[3]	CO1	L3

5 (a)	Derive an expression for the conductivity of an intrinsic semiconductor.	[6]	CO5	L3
(b)	Calculate the Hall voltage produced in a cube shaped semiconductor (side length = 5mm) carrying 3 mA current, when subjected appropriately to the magnetic flux density of 2 weber/m ² . Given that carrier concentration of the semiconductor is $1.7 \times 10^{22} / \text{m}^3$.	[4]	CO5	L3
6 (a)	State Hooke's Law of elasticity? Explain briefly the various factors affecting elasticity.	[5]	CO1	L2
(b)	Show that shear strain is equal to the sum of elongation strain and compression strain.	[5]	CO1	L3
7 (a)	Define lateral strain coefficient (β), linear strain coefficient (α) and hence derive an expression for rigidity modulus (η) in terms of β and α .	[7]	CO1	L3
(b)	Discuss the limiting values of Poisson's ratio.	[3]	CO1	L2
8 (a)	Derive the relation between bulk modulus (K), Young's modulus (Y) and Poisson's ratio, hence obtain the relation between K, Y and η .	[7]	CO1	L3
(b)	Calculate the final volume of the spherical 10 cc (ml) water droplet, if it is compressed uniformly by the stress $20.5 \times 10^{15} \text{ N/m}^2$. (Bulk modulus of the water is $0.2 \times 10^{10} \text{ N/m}^2$)	[3]	CO1	L3