
IAT-2 PHYSICS SCHEME 
1.EXPRESSION FOR FERMI ENERGY  [7] 
From Fermi –Dirac theory     
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5.b. [3] 

f (E) = 99.0
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2.a [5+2] 

Hall effect: When a conductor carrying current is placed in 

magnetic field, an electric field is produced inside the conductor in 

a direction normal to both current and the magnetic field.  

 
 
 
 
                               
 
 
 
 
 
 
                        
 
 

 

Consider a rectangular slab of an n type semiconductor carrying a 

current I along + X axis. Magnetic field B is applied along –Z 

direction. Now according to Fleming’s left hand rule, the Lorentz 

force on the electrons is along +Y axis. As a result the density of 

electrons increases on the upper side of the material and the lower 

side becomes relatively positive. The develops a potential VH-Hall 

voltage between the two surfaces. Ultimately, a stationary state is 

obtained in which the current along the X axis vanishes and a field 

Ey is set up. 

Expression for Hall Coefficient: 

At equilibrium, Lorentz force is equal to force due to 
applied electric field 
                 Bev =- e EH    
                   Hall Field EH = Bv 
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2.b. [3] 

To show that energy levels below Fermi energy are 
completely occupied: 
For E < EF, at T = 0, 

f (E) = 

1
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To show that energy levels above Fermi energy are 
empty: 

For E >
FE , at T=0 
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At ordinary temperatures, for E = EF,  

  f(E) = 
2
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3.a [2+5] 
INTERNAL FIELDS IN A DIELECTRIC: 
It is the resultant of the applied field and the field produced 
due to all the dipoles. 

            FOR 1-D     Ei = Ea + 3

2.1

d


              

aE   

In three dimensional case , (1/d
3
) could be replaced by N, the 

number of atoms per unit volume  and (1.2/Π) by a constant 
γ which depends on the crystal structure. 

HF 

B 
Conventional current or hole 

current 

Here B is along –X , V is along –Y axis 

Lorentz force=   kiXje ˆˆˆ   

So the electron is deflected along + Z axis 

Lorentz force (FL) 

 

                                      

 

Electric force (eE)            Electric Field 

 

 

 

                                 

T= 0 K 

T> 0 K 
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CLAUSIUS – MOSOTTI RELATION:  

This expression relates dielectric constant of an insulator (ε) to the 

polarization of individual atoms (α) comprising it.  
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             where N is the number of atoms per unit volume 

  α  is the polrisability of the atom 

 εr is the relative permittivity of the medium 

  εo is the permittivity of free space. 

Proof:  

If there are N atoms per unit volume, the electric dipole moment 

per unit volume – known as polarization is given by 

   P = NαEi 

By the definition of polarization P, it can be shown that  

P =   ira ENE  10
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The internal field at an atom in a cubic structure (γ =1/3) is of the 

form    
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Substituting for 

a

i

E

E
 in equation (1) 
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3.b. [3] 

 

αe = ɛ0 (ɛr-1)/N = 2.62x10-40  

 

µ = αe x E =7.86 x10-36 Cm 

 

 

 

4.a. [7] 

Expression for Fermi Level in Intrinsic Semiconductor 

Electron density in conduction band is given by      
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Hole density in valence band may be obtained from the result     
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For an intrinsic semiconductor,  ne = nh 
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4.b. [3] 
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5.A  [6] 

Conductivity of Intrinsic semiconductors: 
Current density J = n e Vd 

For a semiconductor, J = ne e Vd (e)   + nh e Vd (h) 
…………….(1) 
But drift velocity Vd  = µE=µ.J/σ 
Using (1),  σ = ne e µe   + nh e µh 

In an intrinsic semiconductor, number of holes is equal 
to number of electrons. 

,  ][en holeeeint   

ne is the electron concentartion 
np is the hole concentration 
µe is the mobility of electrons 
µh is the mobility of holes 
 

5.b. [4] 
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6.a  [2+3] 
Hooke’s law: Strain is proportional to stress at smaller magnitudes. 

As the stress is increased to large magnitudes strain increases more 

rapidly and the linear relationship between stress and strain ceases to 

hold. This  is referred as elastic limit (A).  

 

Effect of stress:          ELASTIC FATIGUE 

Elastic properties of a body repeatedly subjected to stress show 

random variation.  

Ex:  Piston and connecting rods in a locomotive are subjected to 

repeated tensions and compressions during each cycle. Their elastic 

properties randomly fluctuate. It may break under a stress less than 

elastic limit. 

 

2. Annealing :  Annealing operation involves heating and 

gradual cooling. The crystal grains form a uniform 

orientation forming larger domains.This  causes decrease in 

elastic properties. Operations like hammering, rolling break 

up the crystal grains resulting in increase of elastic 

properties.  

 

3. Temperature : Inter molecular forces decreases with rise 

in temperature. Hence the elasticity decreases with rise in 

temperature. (But the elasticity of invar steel (alloy) does 

not change with change of temperature).Carbon filament 

which is highly elastic at ordinary temperature, becomes 

plastic when heated. 

                                     
4. Impurities : Presence of  impurities alters elasticity. It 

can increase or decrease depending on the  nature of 

impurities. Carbon is added in minute quantities to molten 

Iron to increase its elastic property. 

 

6.B  [5] 

A shear of  Ɵ is equivalent to an elongation strain Ɵ/2 and 

compression strain Ɵ/2 at right angles to each other. 

 

 

 

 

 

 

From  the triangle BEB
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        Here EB is the perpendicular from B to DB
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7.A [2+5] 

Linear  strain (α)  - It is the  increase per unit 

length per unit stress along the force. 

Lateral  strain (β)  - It is the  lateral contraction 

per unit length per unit stress perpendicular to 

force 

 

 

 

 

 

    RIGIDITY MODULUS 
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Let the face ABCD of a cube of side L be sheared by a Force F 

through an angle θ. 

Shearing stress = T
L

F


2
 

Shearing Strain 
L

l
 

Rigidity Modulus =


T
 

Shearing stress along AB is equivalent to sum of expansive stress 

along EB and compressive stress along AF. Let α be the longitudinal 

expansive strain per unit Stress per unit length and β be the lateral 

compressive strain per unit stress per unit length respectively. BG is 

perpendicular to EB
1 

EGEB   

Elongation along EB is GB
1
= ... TEB  

Compression along AF = ..TAF  

 Net extension GB
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7.b [3] 

POISSON RATIO 

Within the elastic limit, the lateral strain is proportional to 

longitudinal strain and the ratio between them is a constant for a 

material known as Poisson ratio. 
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LIMITS OF σ 
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1. If σ be a positive quantity, (1-2σ) should be positive 

                 2σ<1 

                  σ < 0.5  

 When σ =0.5, the material is said to be incompressible 

2. If σ be a negative quantity, (1 + σ) should be positive 

                                           σ>-1  
8.A [5+2]  

RELATION BETWEEN BULK MODULUS (K) - α –β 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let stresses TX ,  TY  and TZ  act perpendicular to faces  of a unit 

cube as shown in the figure .Let α  be the increase per unit length 

per unit stress (linear strain) along the force, β  be the lateral 
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contraction ( lateral strain) per unit length per unit stress 

perpendicular to force. 

 

Elongation produced along X axis = TX .α.1 

Contraction produced along X axis  )1..1..(  Zy TT   

 

Change in Length of AB  Zyx TTT   

Change in Length of BG  zxy TTT   

Change in Length of BC  xyz TTT   

Change in Volume of cube = )(  Zyx TTT   X 
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RELATION BETWEEN ELASTIC CONSTANTS 

nK

nK

Kn

n

K

18

23

3

1

2

1
3

)1()2(

)2(..........
2

1

)1......(
3

1
2




















                        

                                               

KnY

Y

Kn

nK

139

1

9

3

)1()2.(2


















 

 

 

 

8.b. [3] 

Bulk Modulus of Elasticity 
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∆V=102.5 m3 

Final volume = V-∆V=(10-5 – 102) m3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


