

USN

Internal Assessment Test 2 –April 2019 (ANSWER KEY)

Sub: Python Application Programming
Sub

Code:
15CS664

Branch

:
CSE

Date: 20/04/2019 Duration: 90 min’s
Max

Marks:
50

Sem/Sec

:
6th A/B / C OBE

Answer any FIVE FULL Questions
MAR

KS

CO RB

T

1 (a) What are lists? Is List mutable? Justify your answer with an example.

a list is a sequence of values

in a list, values can be any type

values in list are called elements or sometimes items.

[10, 20, 30, 40]

['spam', 2.0, 5, [10, 20]]

lists are mutable because you can change the order of items in a list or reassign an

item in a list.

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print(numbers)

[17, 5]

[05] CO3 L2

 (b) How tuples are created in Python? Explain different of accessing and creating

them.

A tuple is a sequence of values much like a list.

Create tuple as a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

enclose tuples in parentheses to help us quickly identify tuples

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element

>>> t1 = ('a',)

To create an empty tuple

>>> t = tuple()

>>> print(t)

()

If the argument is a sequence (string, list, or tuple), the result of the call to tuple is a

tuple with the elements of the sequence

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

Accessing tuples

bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print(t[0])

'a'

slice operator selects a range of elements

>>> print(t[1:3])

('b', 'c')

[05] CO3 L2

2 (a) Implement a Python program using Lists to store and display the N integers

accepted from the user. Write a function called swap to swap the first even number

[05] CO3 L3

of the list with the second odd number of the same list.

Program

N=list()

print("Enter integers. Type \"done\" to exit ")

while True:

 n = input(">")

 if n == 'done':

 break

 N.append(int(n))

print(N)

#index of first even number

index_f_even = None

for i in range(len(N)):

 if N[i]%2==0:

 index_f_even=i

 break

#index of second odd number

index_s_odd=None

count = 0

for i in range(len(N)):

 if N[i]%2!=0:

 index_s_odd=i

 count+=1

 if count==2:

 break;

print("Swap first even number ", N[index_f_even], "at index ",index_f_even,"with

")

print("second odd number",N[index_s_odd],"at index ", index_s_odd)

def swap(i1, i2, lst):

 tmp = lst[i1]

 lst[i1]=lst[i2]

 lst[i2]=tmp

swap(index_f_even, index_s_odd, N)

print("After Swapping")

print(N)

Output:

C: \py_prog>iat2.py

Enter integers. Type "done" to exit

>1

>2

>3

>4

>done

[1, 2, 3, 4]

Swap first even number 2 at index 1 with

second odd number 3 at index 2

After Swapping

[1, 3, 2, 4]

 (b) Explain Dictionaries. Demonstrate it with a Python program that finds the

frequency of letters in a given string.

A dictionary is like a list. In a dictionary, the indices can be (almost) any type.

a dictionary as a mapping between a set of indices (which are called keys) and a set

of values. Each key maps to a value. The association of a key and a value is called a

key-value pair or sometimes an item.

Program

word = 'brontosaurus'

d = dict()

for c in word:

 if c not in d:

 d[c] = 1

 else:

 d[c] = d[c] + 1

print(d)

[05] CO3 L2

3 (a) Write a Python program to search and print for lines in a file that starts with the

word ‘From’ and a character followed by a two digit number between 00 and 99

and then followed by ‘:’. Assume any input file.

import re

hand = open(sample.txt')

for line in hand:

 line = line.rstrip()

 if re.search('^From.[0-9][0-9]::', line):

 print(line)

[06] CO2,C

O3

L3

 (b) Discuss search() and findall() functions of re module.

search() uses the regular expression. It matches the regular expression.

If we want to extract data from a string in Python we can use the findall() method to

extract all of the substrings which match a regular expression.

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

lst = re.findall('\S+@\S+', s)

print(lst)

Output:

['csev@umich.edu', 'cwen@iupui.edu']

when you are using findall(), parentheses indicate that while you want the whole

expression to match, you only are interested in extracting a portion of the

substring that matches the regular expression.

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 x = re.findall('^X\S*: ([0-9.]+)', line)

 if len(x) > 0:

 print(x)

Output:

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

['0.0000']

..

[04] CO3 L2

4 (a) Write a Python program to read all the lines from a file accepted from the user and

print all the email addresses contained in it. Assume the email addresses contain

only non-white space characters.

Program:

try:

 file = input("Enter a file name: ")

 fhand=open(file)

except:

 print("Invalid File")

 exit()

import re

for line in fhand:

 x = re.findall('\S+@\S+', line)

 if len(x) > 0:

 print(x)

Output:

['apache@localhost)']

['source@collab.sakaiproject.org;']

['zqian@umich.edu']

['source@collab.sakaiproject.org']

['zqian@umich.edu']

['zqian@umich.edu']

['aaronz@vt.edu']

…

[06] CO2,C

O3

L3

 (b) Write the expected output:

1. >>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> print(a + b)

[1,2,3,4,5,6]

2. >>>[1,2,3]*3

[1,2,3,1,2,3,1,2,3]

3. >>>t=[‘a’,’b’,’c’,’d’,’e’,’f’]

>>> t[:4]

[‘a’,’b’,’c’,’d’]

4. >>> t1=(1,2,3)

>>> print(t1.append(4))

AttributeError: 'tuple' object has no attribute 'append' OR

 Results in error. Append can be used on lists. Tuples are immutable

[04] CO3 L2

5 (a) Create a student class and initialize it with name and roll number.

Design methods to:

1. Display () – to display all information of the student.

2.setAge () – to assign age to student.

3.setMarks () – to assign marks to student.

Program

class Student:

 def __init__(self, rollno, name):

 self.rollno = rollno

 self.name = name

[06] CO4 L3

 self.age = None

 self.marks = None

 def display(self):

 print("Roll Number:", self.rollno," Name: ", self.name)

 print("Age:", self.age," Marks: ", self.marks)

 def setAge(self, a):

 self.age = a

 def setMarks(self, m):

 self.marks = m

s=Student('G-34', 'Jake')

s.setAge(18)

s.setMarks(52)

s.display()

Sample Output:

C: \py_prog>student_class.py

Roll Number: G-34 Name: Jake

Age: 18 Marks: 52

(b) What is the difference between the 2 ways of converting a string to a list? Explain

using the following string.

>>>s = “Good Morning”

To convert from a string to a list of characters, you can use list:

>>> t = list(s)

>>> print(t)

['G', 'o', 'o', 'd', ‘ ‘, ‘M’, ‘o’, ‘r’, ‘n’, ‘i’, ‘n’, ‘g’]

The list function breaks a string into individual letters. If you want to break a

string into words, you can use the split method:

>>> t = s.split()

>>> print(t)

['Good', 'Morning']

[04] CO3 L2

6 (a) Suppose “romeo.txt” consists of the text from Romeo and Juliet Act 2, Scene 2.

Read the file line by line, print the ten most common words in the text. Make sure

to remove punctuations and convert case of word. Use dictionaries, tuples and lists.

Program

import string

fhand=open("romeo.txt")

counts=dict()

for line in fhand:

 line = line.translate(line.maketrans(' ',' ',string.punctuation))

 line = line.lower()

 words = line.split()

 for word in words:

 counts[word]=counts.get(word,0)+1

l=list()

[10] CO2,C

O3

L3

for key, value in counts.items():

 l.append((value,key))

 #print(key,":",value)

l.sort(reverse=True)

for key, val in l[:10]:

 print(key,":",val)

Output:

C:\ py_prog>countCommon.py

3 : the

3 : is

3 : and

2 : sun

1 : yonder

1 : with

1 : window

1 : who

1 : what

1 : through

7 (a) Write a short note on: 1. Parsing lines& 2. Object Aliasing

Usually when we are reading a file we want to do something to the lines other than

just printing the whole line. Often we want to find the “interesting lines” and then

parse the line to find some interesting part of the line.

Give any example program that reads a file, parses lines and prints only the certain

strings of interest in that line.

#Print day of week

fhand = open('mbox-short.txt')

for line in fhand:

 line = line.rstrip()

 if not line.startswith('From '): continue

 words = line.split()

print(words[2])

Output:

Sat

Fri

Fri

Fri

...

2. Object Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same

object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The association of a variable with an object is called a reference. In this example,

there are two references to the same object.

[06] CO3 L2

An object with more than one reference has more than one name, so we say that the

object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17

>>> print(a)

[17, 2, 3]

 (b) Explain DSU pattern with respect to tuples. Give example.

This feature lends itself to a pattern called DSU for

Decorate a sequence by building a list of tuples with one or more sort keys

preceding the elements from the sequence,

Sort the list of tuples using the Python built-in sort, and

Undecorate by extracting the sorted elements of the sequence.

Code Snippet

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

 t.append((len(word), word)) #Decorate

t.sort(reverse=True) #Sort

res = list()

for length, word in t:

 res.append(word) #Undecorate

print(res)

[04] CO3 L2

8 (a) Discuss any 5 meta characters used in regular expressions with suitable example.

1. the caret character is used in regular expressions to match “the beginning” of a

line.

Search for lines that start with 'From'

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 if re.search('^From:', line):

 print(line)

2. The period or full stop, which matches any character.

Search for lines that start with 'F', followed by

2 characters, followed by 'm:'

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 if re.search('^F..m:', line):

 print(line)

3. Indicate that a character can be repeated any number of times using the * or +

characters in your regular expression. These special characters mean that instead of

matching a single character in the search string, they match zero-or-more characters

(in the case of the asterisk) or one-or-more of the characters (in the case of the plus

sign).

Search for lines that start with From and have an at sign

import re

[05] CO3 L1

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 if re.search('^From.+@', line):

 print(line)

4. matches a non-whitespace character (\S).

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

lst = re.findall('\S+@\S+', s)

print(lst)

Output:

['csev@umich.edu', 'cwen@iupui.edu']

5. Square brackets are used to indicate a set of multiple acceptable characters we are

willing to consider matching.

Search for lines that have an at sign between characters

The characters must be a letter or number

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 x = re.findall('[a-zA-Z0-9]\S+@\S+[a-zA-Z]', line)

 if len(x) > 0:

 print(x)

Any of the following characters with code snippet or regular expression.

ˆ Matches the beginning of the line.

$ Matches the end of the line.

. Matches any character (a wildcard).

\s Matches a whitespace character.

\S Matches a non-whitespace character (opposite of \s).

* Applies to the immediately preceding character(s) and indicates to match zero

or more times.

*? Applies to the immediately preceding character(s) and indicates to match zero

or more times in “non-greedy mode”.

+ Applies to the immediately preceding character(s) and indicates to match one or

more times.

+? Applies to the immediately preceding character(s) and indicates to match one

or more times in “non-greedy mode”.

? Applies to the immediately preceding character(s) and indicates to match zero

or one time.

?? Applies to the immediately preceding character(s) and indicates to match zero

or one time in “non-greedy mode”.

[aeiou] Matches a single character as long as that character is in the specified set.

In this example, it would match “a”, “e”, “i”, “o”, or “u”, but no other characters.

[a-z0-9] You can specify ranges of characters using the minus sign. This example

is a single character that must be a lowercase letter or a digit.

[ˆA-Za-z] When the first character in the set notation is a caret, it inverts the

logic. This example matches a single character that is anything other than an

uppercase or lowercase letter.

() When parentheses are added to a regular expression, they are ignored for the

purpose of matching, but allow you to extract a particular subset of the matched

string rather than the whole string when using findall().

\b Matches the empty string, but only at the start or end of a word.

\B Matches the empty string, but not at the start or end of a word.

\d Matches any decimal digit; equivalent to the set [0-9].

\D Matches any non-digit character; equivalent to the set [ˆ0-9].

 (b) What is the need of escape characters in regular expressions? Give suitable code

snippet.

We can indicate that we want to simply match a character by prefixing that

characterwith a backslash. For example, we can find money amounts with the

following regular expression.

Code Snippet

import re

x = 'We just received $10.00 for cookies.'

y = re.findall('\$[0-9.]+',x)

[05] CO3 L2

