USN
A
1) CMRIT
Internal Assessment Test Il — May 2019
Answer Solution
Sub: | Cloud Computing Sub Code: | 18SCS23 ‘ Branch: ‘ CSE
Date: | 09/05/19 | Duration: | 90 min’s | Max Marks: | 50 | Sem/Sec: | M. Tech (CSE)/ Il SEM OBE
Answer any FIVE FULL Questions MARKS | | RBT
1. a) Define Virtualization? Explain Layering and virtualization [07] CO3 L2

e Virtualization abstracts the underlying resources and simplifies their use,

isolates users from one another, and supports replication which, in turn,

increases the elasticity of the system.

Layering and virtualization

e A common approach to manage system complexity is to identify a set of

layers with well defined interfaces among them; the interfaces separate

different levels of abstraction.

Layering minimizes the interactions among the subsystems and
simplifies the description of the subsystems; each subsystem is
abstracted through its interfaces with the other subsystems thus, we
are able to design, implement, and modify the individual subsystems
independently.

The ISA (Instruction Set Architecture) defines the set of instructions
of a processor; for example, the Intel architecture is represented by
the x86-32 and x86-64 instruction sets for systems supporting 32-bit
addressing and 64-bit addressing, respectively.

The hardware supports two execution modes, a privileged, or kernel
mode and a user mode.

The instruction set consists of two sets of instructions, privileged
instructions that can only be executed in kernel mode and the non-
privileged instructions that can be executed in user mode.

There are also sensitive instructions that can be executed in kernel
and in user mode, but behave differently.

The hardware consists of one or more multi-core processors, a system

interconnect, (e.g., one or more busses) a memory translation unit,

the main memory, and 1/0 devices, including one or more networking
interfaces.

Applications written mostly in High Level languages (HLL) often
call library modules and are compiled into object code. Privileged
operations, such as 1/O requests, cannot be executed in user mode;
instead, application and library modules issue system calls and the
operating system determines if the privileged operations required by
the application do not violate system security or integrity and, if so,

executes them on behalf of the user.

Al
v
API
Libraries (T\
ABI '
+ System calls *
Operating System [A3
ISA '
‘ System ISA User ISA
Hardware

HLL code
Intermediate Portable
code

code
Compiler back-end

Object code

VM compiler/ VM compiler/
interpreter interpreter

Memory (Memory
image I1SA-1 image ISA-2 |

M

Layering and interfaces between layers in a computer system; the
software components including applications, libraries, and operating
system interact with the hardware via several interfaces: the

Application Programming Interface (API), the Application Binary

Interface (ABI), and the Instruction Set Architecture (ISA). An
application uses library functions (Al), makes system calls (A2), and

executes machine instructions (A3).

b) Describe the concept of Virtual Machine with respect to cloud

Virtual Machine (VM)- isolated environment that appears to be a whole

computer, but actually only has access to a portion of the computer resources.

Process VM - a virtual platform created for an individual process and
destroyed once the process terminates.

System VM - supports an operating system together with many user
processes.

Traditional VM - supports multiple virtual machines and runs directly
on the hardware.

Hybrid VM - shares the hardware with a host operating system and
supports multiple virtual machines.

Hosted VM - runs under a host operating system.

Process Wiis | Sysiem Wids
Sarr A Drflornr BS54 Samma A Doy T E3A,
Apphcabon
Mt Dynamic Tradional Whole Clamat
progmm | || wanemtons W syslem VM 0S 1
Binary
. HLL Vikts . Codesigned W=
opEmirens
P Hiybaid W ==
e |'u'|rl1.|al Machine MnanrI
Hardware
{a) (L]
(,_—,: o8 e | r'.p'._'::lcar_*-n
5 5 5 Gue=l OS5 -1 Suest OS5 @
N IEIRE VM1 st
= o 3
= || < =

Wirtual Machine Monitor

Host OS5 Host OS5

| Hardware I

(] {dh

Figure 46: (a) A taxonomy of process and systems VMs for the same and for di
Instruction Set Architectures (ISAs). Traditional, Hybrid, and Hosted are three cla
VM= for systems with the same ISA. (b) Traditional WVMs; the VMM supports m
virtual machines and runs directly on the hardware;. (c) Hybrid VM; the VMM sha
hardware with a host operating system and supports multiple virtual machines. (d) |

[03]

CO3

L2

a) Write comparison between full virtualization and paravirtualization

Full virtualization and paravirtualization

Full virtualization — a guest OS can run unchanged under the VMM as if
it was running directly on the hardware platform.

Requires a virtualizable architecture.

Examples: Vmware.

Paravirtualization - a guest operating system is modified to use only
instructions that can be virtualized. Reasons for paravirtualization:
Some aspects of the hardware cannot be virtualized.

Improved performance.

Present a simpler interface.

Examples: Xen, Denali

Guest OS

Hardware
abstraction
layer

Guest OS

Hardware
abstraction
layer

Hypervisor Hypervisor

Hardware Hardware

(b) Paravirtualization

(a) Full virtualization

b) Write any 4 problems faced by virtualization of the x86 Architecture

Ring de-privileging - a VMMs forces the operating system and the
applications to run at a privilege level greater than 0.

Ring aliasing - a guest OS is forced to run at a privilege level other than
that it was originally designed for.

Address space compression - a VMM uses parts of the guest address
space to store several system data structures.

Non-faulting access to privileged state - several store instructions can
only be executed at privileged level 0 because they operate on data
structures that control the CPU operation. They fail silently when

executed at a privilege level other than 0.

[06]

[04]

COos3

CO3

L2

L2

Guest system calls which cause transitions to/from privilege level 0 must
be emulated by the VMM.

Interrupt virtualization - in response to a physical interrupt, the VMM
generates a "~ virtual interrupt” and delivers it later to the target guest OS
which can mask interrupts.

Access to hidden state - elements of the system state, e.g., descriptor
caches for segment registers, are hidden; there is no mechanism for
saving and restoring the hidden components when there is a context
switch from one VM to another.

Ring compression - paging and segmentation protect VMM code from
being overwritten by guest OS and applications. Systems running in 64-
bit mode can only use paging, but paging does not distinguish between
privilege levels 0, 1, and 2, thus the guest OS must run at privilege level
3, the so called (0/3/3) mode. Privilege levels 1 and 2 cannot be used thus,
the name ring compression.

The task-priority register is frequently used by a guest OS; the VMM
must protect the access to this register and trap all attempts to access it.

This can cause a significant performance degradation.

3. Write case study on Xen paravirtualization

The goal of the Cambridge group - design a VMM capable of scaling to
about 100 VMs running standard applications and services without any
modifications to the Application Binary Interface (ABI).

Linux, Minix, NetBSD, FreeBSD, NetWare, and OZONE can operate
as paravirtualized Xen guest OS running on x86, x86-64, Itanium, and
ARM architectures.

Xen domain - ensemble of address spaces hosting a guest OS and
applications running under the guest OS. Runs on a virtual CPU.
Domo0 - dedicated to execution of Xen control functions and privileged
instructions.

DomuU - a user domain.

[10]

cos| L2

o Applications make system calls using hypercalls processed by Xen;

privileged instructions issued by a guest OS are paravirtualized and must

be validated by Xen.

Xen

Management
0s Application Application Application
Guest OS Guest OS Guest OS
Xen-aware
device drivers
Xen-aware Xen-aware Xen-aware
device drivers device drivers device drivers
Xen
Domain0 control Virtual x86 Virtual physical | |, - Virtual block
interface CPU memory SOTE R devices

X86 hardware

Xen implementation on x86 architecture

Xen runs at privilege Level 0, the guest OS at Level 1, and applications
at Level 3.

The x86 architecture does not support either the tagging of TLB entries
or the software management of the TLB. Thus, address space
switching, when the VMM activates a different OS, requires a complete
TLB flush; this has a negative impact on the performance.

Solution - load Xen in a 64 MB segment at the top of each address
space and delegate the management of hardware page tables to the
guest OS with minimal intervention from Xen. This region is not
accessible or re-mappable by the guest OS.

Xen schedules individual domains using the Borrowed Virtual Time
(BVT) scheduling algorithm.

A guest OS must register with Xen a description table with the

addresses of exception handlers for validation.

Dom0 components

XenStore —a DomO process.

Supports a system-wide registry and naming service.

Implemented as a hierarchical key-value storage.

A watch function informs listeners of changes of the key in storage they
have subscribed to.

Communicates with guest VMs via shared memory using Dom0O
privileges.

Toolstack - responsible for creating, destroying, and managing the
resources and privileges of VMs.

To create a new VM, a user provides a configuration file describing
memory and CPU allocations and device configurations.

Toolstack parses this file and writes this information in XenStore.
Takes advantage of DomO privileges to map guest memory, to load a
kernel and virtual BIOS and to set up initial communication channels
with XenStore and with the virtual console when a new VM is created.

Xen abstractions for networking and 1/0

Each domain has one or more Virtual Network Interfaces (VIFs) which
support the functionality of a network interface card. A VIF is attached
to a Virtual Firewall-Router (VFR).

Split drivers have a front-end in the DomU and the back-end in DomO;
the two communicate via a ring in shared memory.

Ring - a circular queue of descriptors allocated by a domain and
accessible within Xen. Descriptors do not contain data, the data buffers
are allocated off-band by the guest OS.

Two rings of buffer descriptors, one for packet sending and one for
packet receiving, are supported.

To transmit a packet:A guest OS enqueues a buffer descriptor to the
send ring,then Xen copies the descriptor and checks safety, copies only

the packet header, not the payload, and executes the matching rules.

4.

a) Explain the policies and mechanisms for resource management

A policy typically refers to the principles guiding decisions, while
mechanisms represent that means to implement policies.

Cloud resource management policies can be loosely grouped into five

classes:

1D ohannsd

Gusct somain

H

T
—=
Im)
Fegquect quawe
U -
‘Consumer Regquest Froducer Reguest
iprhvate ponter in Xen) shared poinier updated
- Eythe guest 05|
- T
o
7 '
|
I |
Outstanding || |
SSoriptors | Umisssd
|

II
A
/' \ Consumer Response

Producer Respanse e (zewste pointeraintaned by
(shared pointer updated REGpancs gusLs the guest 0F)
by Xen
(]

Xen zero-copy semantics for data transfer using 1/O rings. (a) The communication
between a guest domain and the driver domain over an /O and an event channel;
NIC is the Network Interface Controller. (b) the circular ring of buffers.

1. Admission control.
2. Capacity allocation.
3. Load balancing.

4. Energy optimization.

5. Quality of service (QoS) guarantees.
The explicit goal of an admission control policy is to prevent the system from
accepting workload in violation of high-level system policies; for example,
a system may not accept additional workload which would prevent it from
completing work already in progress or contracted.
Limiting the workload requires some knowledge of the global state of the

system; in a dynamic system such knowledge, when available, is at best

obsolete.

[05]

CO4

L2

Capacity allocation means to allocate resources for individual instances; an
instance is an activation of a service. Locating resources subject to multiple
global optimization constraints requires a search of a very large search space
when the state of individual systems changes rapidly.

Load balancing and energy optimization can be done locally, but global load
balancing and energy optimization policies encounter the same difficulties.
State information for these models can be too intrusive and unable to provide
accurate data. Many techniques are concentrated on system performance in
terms of throughput and time in system, but they rarely include energy trade-
offs or QoS guarantees.

The four basic mechanisms for the implementation of resource management
policies are:
 Control theory. Control theory uses the feedback to guarantee
system stability and predict transient behavior but can be used only to
predict local rather than global behavior; Kalman filters have been
used for unrealistically simplified models.
« Machine learning. A major advantage of machine learning
techniques is that they do not need a performance model of the system
this technique could be applied for coordination of several autonomic
system managers.
» Utility-based. Utility-based approaches require a performance
model and a mechanism to correlate user-level performance with cost.
» Market-oriented/economic mechanisms. Such mechanisms do not
require a model of the system, e.g., combinatorial auctions for bundles

of resources

b)Explain a two level architecture for resource allocation

Application 1 Application n
1 1
Application . ‘ Application i |
trall ntrall
L Sl g Monitor Manitar
0y T 5] CO“
| Cloud Controller | L Actuator Actuator
Cloud Platform I
Figure 57: A two-level control architecture; application controllers and clond controllers

work in concert.
The Automatic resource management is based on two levels of
controllers, one for the service provider and one for the applications.
The main components of a control system are: the inputs, the control
system components, and the outputs.
The inputs in such models are: the offered workload and the policies
for admission control, the capacity allocation, the load balancing, the
energy optimization, and the QoS guarantees in the cloud.
The system components are sensors used to estimate relevant
measures of performance and controllers which implement various
policies;
The output is the resource allocations to the individual applications.
The controllers use the feedback provided by sensors to stabilize the
system; stability is related to the change of the output. If the change
is too large then the system may become unstable.
There are three main sources of instability in any control system:
1. The delay in getting the system reaction after a control action;
2. The granularity of the control, the fact that a small change enacted
by the controllers leads to very large changes of the output;
3. Oscillations, when the changes of the input are too large and the
control is too weak, such that the changes of the input propagate
directly to the output.
Two types of policies are used in autonomic systems:

0] threshold-based policies and

L2

(i) sequential decision policies based on Markovian decision
models.

In the first case, upper and lower bounds on performance trigger

adaptation through resource reallocation; such policies are simple

and intuitive but require setting per-application thresholds.

5. Explain the concept of resource bundling with supportive algorithms

[10] CO4| L2
e Resources in a cloud are allocated in bundles; users get maximum benefit from

a specific combination of resources. Indeed, along with CPU cycles, an
application needs specific amounts of main memory, disk space, network
bandwidth, and so on.

e Resource bundling complicates traditional resource allocation models and has
generated an interest in economic models and, in particular, in auction
algorithms. In the context of cloud computing, an auction is the allocation of
resources to the highest bidder.

e Combinatorial auctions. Auctions in which participants can bid on
combinations of items or packages are called combinatorial auctions such
auctions provide a relatively simple, scalable, and tractable solution to cloud
resource allocation.

e Two recent combinatorial auction algorithms are the Simultaneous Clock
Auction and the Clock Proxy Auction ;

e The algorithm is called Ascending Clock Auction, (ASCA). In all these
algorithms the current price for each resource is represented a “clock” seen by
all participants at the auction.

e consider a strategy when prices and allocation are set as a result of an auction;
in auction, users provide bids for desirable bundles and the price they are willing
to pay.

We consider a strategy when prices and allocation are set as a result of an auction; in
this auction, users provide bids for desirable bundles and the price they are willing to pay.
We assume a population of U users, u = {1,2,...,U}, and R resources, r = {1,2,..., R}.
The bid of user u is B, = {Q,, m,} with Q; = (r,rlll. r,ri. f;':. ...) an R-component vector; each
element of this vector, g, represents a bundle of resources user u would accept and, in
return, pay the total price . Each vector component g, is a positive quantity and encodes
the quantity of a resource desired, or if negative, the quantity of the resource offered. A
user expresses her desires as an idifference set T = (g} XOR ¢ XOR ¢ XOR ...).

The final auction prices for individual resources are given by the vector p = (p. ", ..., P
and the amounts of resources allocated to user u are r, = (), 22, r;'). Thus, the ex-

Lgpy

.fi'}

pression [(x,)" p | represents the total price paid by user u for the bundle of resources if the
bid is successful at time T. The scalar [min,cg (¢' p)] is the final price established through
the bidding process.

Pricing and allocation algorithms. A pricing and allocation algorithm partitions
the set of users in two disjoint sets, winners and losers, denoted as W and L,
respectively;

the algorithm should:

1. Be computationally tractable; traditional combinatorial auction algorithms such as
Vickey-Clarke-Groves (VLG) fail this criteria, they are not computationally
tractable.

2. Scale well; given the scale of the system and the number of requests for service,
scalability is a necessary condition.

3. Be objective; partitioning in winners and losers should only be based on the price
1qes

of a user’s bid; if the price exceeds the threshold then the user is a winner, otherwise
the user is a loser.

4. Be fair; make sure that the prices are uniform, all winners within a given resource
pool pay the same price.

5. Indicate clearly at the end of the auction the unit prices for each resource pool.

6. Indicate clearly to all participants the relationship between the supply and the
demand in the system.

Table 15: The constraints for a combinatorial auction algorithm

Iy E {ll IJ Q“}. Wu -a user gets all resources or nothing

Zﬂ.rn <) -final allocation leads to a net surplus of resources
m, = (z,) p, Yue W -auction winners are willing to pay the final price
(7y)'p = mingeo,(¢"p), Yu € W -winners get the cheapest bundle in T

T, < mingo (q'p), Yu€ L -the bids of the losers are below the final price
p=10 -prices must be non-negative

The ASCA combinatorial auction algorithm. Informally, in the ASCA algorithm
332] the participants at the auction specify the resource and the quantities of that resource
offered or desired at the price listed for that time slot. Then the excess vector

2t) =) (t) (67)
u

1s computed. If all its components are negative, then the auction stops; negative components
mean that the demand does not exceed the offer. If the demand is larger than the offer,
z(t) = 0, then the auctioneer increases the price for items with a positive excess demand
and solicits bids at the new price. Note that the algorithm satisfies conditions 1 through 6;
all users discover the price at the same time and pay or receive a “fair” payment relative
to uniform resource prices, the computation is tractable, and the execution time is linear in
the number of participants at the auction and the number of resources. The computation
1s robust, generates plausible results regardless of the initial parameters of the system.

lE.r,,{.‘}}O

xult)

s
.

plt+1) |

Figure 61: The schematics of the ASCA algorithm; to allow for a single round auction users
are represented by proxies which place the bids z,(t). The auctioneer determines if there is
an excess demand and, in that case, 1t raises the price of resources for which the demand
exceeds the supply and requests new bids.

There is a slight complication as the algorithm involves user bidding in multiple round:
to address this problem the user proxies automatically adjust their demands on behalf ¢
the actual bidders, as shown in Figure 61. These proxies can be modeled as functions whic
compute the “best bundle” from each Q, set given the current price

o [ifdp<m, withg, € argmin(g,p)
H 0 otherwise

The input to the ASCA algorithm: U users, R resources, p the starting price, and th
update increment function, g : (z,p) — RA. The pseudo code of the algorithm is:
L:sett=0,p(0)=p

2: loop

3: collect bids z,(t) = G,(p(t)). Vu

4: calculate excess demand z(t) =). z.(t)

5: if z(t) <0 then

6 break

7: else

8: update prices p(t + 1) = p(t) + g(z(t), p(t))
9 te=t+1

10: endif

11: end loop

In this algorithm g(z(t), p(t)) is the function for setting the price increase. This functio
can be correlated with the excess demand z(t) as in g(x(t), p(t)) = az(t)" (the notation =
means max(z,())) with o a positive number. An alternative is to ensure that the price doe
not increase by an amount larger than 4; i that case g(z(t), p(t)) = min(az(t)™, de) wit
e=(1,1,...,1) is an R-dimensional vector and minimization is done componentwise.

6. Explain Fair queuing and start-time fair queuing

Fair queuing:

LELELL LIV o Ll Bl LHLLIUL W ILLLLL.

[10]

The fair queuing (F()) algorithm in [102] proposes a solution to this problem. First,
it introduces a bit-by-bit round-robin (BR) strategy; as the name implies, in this rather
impractical scheme a single bit from each queue is transmitted and the queues are visited
in a round-robin fashion. Let R(t) be the number of rounds of the BR algorithm up to time
t and Nyetive(t) the number of active flows through the switch. Call # the time when the
packet i of flow a, of size P* bits arrives and call 57 and F the values of R(t) when the
first and the last bit, respectively, of the packet 1 of flow a are transmitted. Then,

Fi{r)=8%()+ P

SH(=RA)

F(15)

IlW.'l}

F{)=85(U)+ P

S)=FL(00)

RY(1%)

Rit)

Y

Figure 63: Transmission of a packet i of flow a arriving at time t¥ of size P* bits. The
transmission starts at time S! = max[F*,, R(¢{)] and ends at time F' = 57 + P with
R(t) the number of rounds of the algorithm. (a) The case F'; < R({). (b) The case

Ft, = R(t).

Fr=Si 4P and S =max|F?,, R{). (69)

The quantities R(t), Nactive(t), 5S¢ and F* depend only on the arrival time of the packets, #7,
and not on their transmission time, provided that a How a is active as long as

R(t)<F' when 1=max(j|t; <1).

B = B + max[F_ , (R(t]) - 6],

(70)

The authors of [102] use for packet-by-packet transmission time the following non-preemptive
scheduling rule which emulates the BR strategy: the next packet to be transmatted is the one
with the smallest F!'. A preemptive version of the algorithm requires that the transmission
of the current packet be interrupted as soon as one with a shorter finishing time, F', arrives,
A fair allocation of the bandwidth does not have an effect on the timing of the transmis-
sion. A possible strategy is to allow less delay for the flows using less than their fair share
of the bandwidth. The same paper [102] proposes the introduction of a quantity called the
bid, BY, and scheduling the packet transmission based on its value. The bid is defined as

(1)

CO4

L2

Start-time fair queuing:

A hierarchical CPU scheduler for multimedia operating systems was proposed in [142]|. The
basic idea of the start-time fair quening (SF(}) algorithm is to organize the consumers of
the CPU bandwidth in a tree structure; the root node is the processor and the leaves of this
tree are the threads of each application. A scheduler acts at each level of the hierarchy; the
fraction of the processor bandwidth, B, allocated to the intermediate node 1 is

B; w;
Do (72)
B i1 W

with w;,1 < j < n, the weight of the n children of node i, see the example in Figure 64.

Figure 6id: The SF() tree for scheduling when two virtual machines V M} and VM, run on a
powerful server. V' M, runs two best-effort applications A;, with three threads 11, t;2, and
t13. and A, with a single thread ¢,; VM, runs a video-streaming application A3 with three
threads vsy, vss, and vss. The weights of virtual machines, applications, and individual
threads are shown in paranthesis.

An 5F() scheduler follows several rules:

o (R1) The threads are serviced in the order of their virtual start up time; ties are
broken arbitrarily.

o (R2) The virtual startup time of the i-th activation of thread r is
Sy(t) = max [v(77), 'V (#)] and S7=0. (73)

The condition for thread i to be started is that thread (i — 1) has finished and that
the scheduler is active.

o (R3) The virtual finish time of the i-th activation of thread = is
Fi(t) = Si(t) + - (74)

A thread is stopped when its time quantum has expired; its time quantum is the time
quantum of the scheduler divided by the weight of the thread.

o (R4) The virtual time of all threads is initially zero, v} = 0. The virtual time v(t) at
real time t is computed as follows:
() = Virtual start time of the thread in service at time ¢, if CPU is busy
"7\ Maximum finish virtual time of any thread, if CP is idle

7.

Describe the concept of a) Borrowed Virtual Time
Borrowed Virtual Time:

The objective of the borrowed virtual time (BVT) algorithm is to support low-latency dis-
patching of real-time applications, as well as a weighted sharing of the CPU among several
classes of applications [107]. Like SFQ, the BVT algorithm supports scheduling of a mix
of applications, some with hard, some with soft real-time constraints, and applications de-
manding only a best-effort.

Thread i has an effective virtual time, E;, an actual virtual time, A;, as well as a virtual
time warp, W;. The scheduler thread maintains its own scheduler virtual time (SVT) defined
as the minimum actual virtual time A; of any thread. The threads are dispatched in the
order of their effective wirtual time, E;, a policy called the Earliest Virtual Time (EVT).

The virtual time warp allows a thread to acquire an earlier effective virtual time, in
other words, to borrow virtual time from its future CPU allocation. The virtual warp time
is enabled when the variable warpBack is set; in this case a latency-sensitive thread gains
dispatching preference as

E o A if warpBack = OFF
! A =W, if warpBack = ON

The algorithm measures the time in minimum charging units, meu, and uses a time quantum
called context suntch allowance (C) which measures the real time a thread is allowed to run
when competing with other threads, measured in multiples of meu; typical values for the
two quantities are meu = 100 psec and €' = 100 msec. A thread is charged an integer
number of meu.

Context switches are triggered by traditional events, the running thread is blocked wait-
ing for an event to occur, the time quantum expires, an interrupt occurs; context switching

(100)

also oceurs when a thread becomes runnable after sleeping. When the thread 7 becomes
runnable after sleeping, its actual virtual time is updated as follows

A; max[4;, SVT]. (101)

This policy prevents a thread sleeping for a long time to claim control of the CPU for a
longer period of time than it deserves.

If there are no interrupts threads are allowed to run for the same amount of virtual time.
Individual threads have weights; a thread with a larger weight consumes its virtual time
more slowly. In practice, each thread 7 maintains a constant k; and uses its weight w; to
compute the amount A used to advance its actual virtual time upon completion of a run

A= A+ A (102)
Given two threads a and b
ka kb
A= _2 (103)
wy iy

The EVT policy requires that every time the actual virtual time is updated, a context
switch from the current running thread 7; to a thread 7; occurs if

4"1} E .‘ii - E {1“4]

[05]

CO4

L2

b)Utility based model for cloud-based web services:

A utility function relates the “benefits” of an activity or service with the “cost” to provide
the service. For example, the benefit could be revenue and the cost could be the power

consumption.

o — =~ @@ O30 T

o~ ®mE @ 3O

 Utilty function U(R)

Figure 59: The utility function [/(R) is a series of step functions with jumps corresponding to
the response time, R = Rg|R;|Rz, when the reward and the penalty levels change according
to the SLA. The dotted line shows a quadratic approximation of the utility function.

[05]

CO4

L2

A service level agreement (SLA) often specifies the rewards as well as penalties associated
with specific performance metrics. Sometimes the quality of services translates into average
response time; this 1s the case of clond-based web services when the SLA often specifies
explicitly this requirement. For example, Figure 59 shows the case when the performance

metrics is K, the response time.

The largest reward can be obtained when R < Ry a

slightly lower reward corresponds to By < R < H;: when R, < R < H,. instead of gaining
a reward, the provider of service pays a small penalty; the penalty increases when R > R,
A utility function, U/(R), which captures this behavior is a sequence of step functions; the

