

Best VTU Student Companion You Can Get

DOWNLOAD NOW AND GET

Instant VTU Updates, Notes, QP’s,

Previous Sem Results (CBCS), Class Rank, University Rank,

Time Table, Students Community, Chat Room and More

CLICK BELOW TO DOWNLOAD VTU CONNECT APP

IF YOU DON’T HAVE IT

* If you have any study materials which may help other students or having any queries

contact us at : support@vtuconnect.in

https://play.google.com/store/apps/details?id=in.ac.vtu.conn&hl=en_IN
https://play.google.com/store/apps/details?id=in.ac.vtu.conn&hl=en_IN
mailto:support@vtuconnect.in

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

VTU Connect App Download Now from Google Play Store for Notes, QP's, Previous Sem Result and Lot More

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

VTU Connect App Download Now from Google Play Store for Notes, QP's, Previous Sem Result and Lot More

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

1) A) Discuss three OOP principles. [2+2+2]

Encapsulation: Encapsulation can be defined as the procedure of casing up of codes and

their associated data jointly into one single component.
In simple terms, encapsulation is a way of packaging data and methods together into one unit.
Encapsulation gives us the ability to make variables of a class keep hidden from all other
classes of that program or namespace.
 Hence, this concept provides programmers to achieve data hiding. Programmers can have full
control over what data storage and manipulation within the class

Inheritance: Inheritance can be defined as the procedure or mechanism of acquiring all the

properties and behavior of one class to another, i.e., acquiring the properties and behavior of
child class from the parent class.

Java supports three types of inheritance. These are:

Polymorphism: The word polymorphism means having multiple forms. The term

Polymorphism gets derived from the Greek word where poly + morphos where poly means many
and morphos means forms.

· Static Polymorphism

· Dynamic Polymorphism.

b) Explain steps to execute simple java program and role of JVM in execution

Steps:
a) After typing the program in the terminal we have to type javac progranmane.java and hit
enter
b) Then again in the terminal (if no error is there) the we have to type java program name
and hit enter key

Role of JVM in execution can be described as follows:

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

· Reading Bytecode.
· Verifying bytecode.
Linking the code with the library

c) Explain different access specifiers

 Public: keyword applied to a class, makes it available/visible everywhere.

Applied to a method or variable, completely visible.

 Default: (No visibility modifier is specified): it behaves like public in its

package and private in other packages.

 Default Public keyword applied to a class, makes it available/visible

everywhere. Applied to a method or variable, completely visible.

 Private : fields or methods for a class only visible within that class. Private

members are not visible within subclasses, and are not inherited.

 Protected : members of a class are visible within the class, subclasses and

also within all classes that are in the same package as that class.

2) A) Explain the scope and the life time of a variable with an example [05]

b) What is narrowing and widening. Explain with an example.

[6]

Widening :When one type of data is assigned to another type of variable, an automatic type conversion

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is

always large enough to hold all valid byte values, so no explicit cast statement is required. For widening

conversions, the numeric types, including integer and floating-point types, are compatible with each other.

 Narrowing: In case of stornt int value to a byte variable, conversion will not be performed

automatically, because a byte is smaller than an int. This kind of conversion is sometimes called a

narrowing conversion, To create a conversion between two incompatible types, we must use a cast. A cast

is simply an explicit type conversion. It has this general form:

(target-type) value

For example, the following fragment casts an int to a byte. If the integer’s value is larger than the range of

a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;

byte b;

// ...

b = (byte) a;

c) Explain how array in java works differently than C(syntax and examples are compulsory). Write

java program to display [5]

 0 1 2 3 4

 5 6 7 8 9

 10 11 12 13 14

 15 16 17 18 19

 [6]

In C programming declaration of array is as follows:
 Datatype arr-name[size of the array];

 int arr[20];

But in array is declared as follows:

 Datatype arr-name[]= new Datatype [size of the array];

 Int arr[]= new arr[20];

 In java array will be declared with the keyword “new” and for that all the elements in the array will be

initialized to 0. But in C as no new keyword is used at the time of array declaration so elements of array in

C at the time of declaration will be initialized to null.

java program to display

 0 1 2 3 4

 5 6 7 8 9

 10 11 12 13 14

 15 16 17 18 19

public class display {

 public static void main(String[] args) {

 for (int i=0;i<20;i++)

 {

 System.out.print(i+" ");

 if(i==4)

 {

 System.out.println();

 }

 }

 }

}

3) A) Explain the following operators with example

 Logical opeartor

 Bitwise operator

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

Bitwise opeator

~ ~op Inverts all bits

& op1 & op2 Produces 1 bit if both operands are 1

| op1 |op2 Produces 1 bit if either operand is 1

^ op1 ^ op2 Produces 1 bit if exactly one operand is 1

>> op1 >> op2 Shifts all bits in op1 right by the value of op2

<< op1 << op2 Shifts all bits in op1 left by the value of op2

b) Explain Ternary operator. Write a java program to display largest of three numbers
using ternary operator [6]
· ternary (three-way) operator that can replace certain types of if-then-else statements.

· This operator is the ?.

· The ? has this general form: expression1 ? expression2 : expression3

· Here, expression1 can be any expression that evaluates to a boolean value. If expression1

is true, then expression2 is evaluated; otherwise, expression3 is evaluated.
· The result of the ? operation is that of the expression evaluated.

· Both expression2 and expression3 are required to return the same type, which can’t be void.

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

Largest among three numbers:

public class Ternary {

 public static void main(String[] args) {

 int a=40,b=39,c=99,res;

 res=(a>b)?((a>c)?a:c):((b>c)?b:c);
 System.out.println(res);

 }

}

c) Explain use of for..each loop with suitable example. Write a program to explain a 2D data: Name

and USN

Syntax

Following is the syntax of enhanced for loop −

for(declaration : expression) {

 // Statements

}

● Declaration − The newly declared block variable, is of a type compatible with the

elements of the array you are accessing. The variable will be available within the for

block and its value would be the same as the current array element.

● Expression − This evaluates to the array you need to loop through. The expression

can be an array variable or method call that returns an array.

Example

import java.util.Scanner;

public class GetStudentDetails

{

 public static void main(String args[])

 {

 String name;

 int roll, math, phy, eng;

 Scanner SC=new Scanner(System.in);

 System.out.print("Enter Name: ");

 name=SC.nextLine();

 System.out.print("Enter Roll Number: ");

 roll=SC.nextInt();

 System.out.print("Enter marks in Maths,

Physics and English: ");

 math=SC.nextInt();

 phy=SC.nextInt();

 eng=SC.nextInt();

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 int total=math+eng+phy;

 float perc=(float)total/300*100;

 System.out.println("Roll Number:" + roll

+"\tName: "+name);

 System.out.println("Marks (Maths, Physics,

English): " +math+","+phy+","+eng);

 System.out.println("Total: "+total

+"\tPercentage: "+perc);

 }

}

6) a) Demonstrate use of i) break statement in do..while loop ii) continue statement in while loop with

examples.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while loop.
The output from this program is the same as just shown.
// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[]) {
int i = 0;
do{
if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);
i++;
}while(i < 100);
System.out.println("Loop complete.");
}
}

In while and do-while loops, a continue statement
causes control to be transferred directly to the conditional expression that controls the
loop
For all three loops, any intermediate code is bypassed.
Here is an example program that uses continue to cause two numbers to be printed on
each line:
// Demonstrate continue.
class Continue {
public static void main(String args[]) {
Int i=0;
while(i<10)
{
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("");

i++ ;
}
}
}
b) Write program to display Prime numbers between 1 to 100.
class PrimeNumbers

{

 public static void main (String[] args)

 {

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 int i =0;

 int num =0;

 //Empty String

 String primeNumbers = "";

 for (i = 1; i <= 100; i++)

 {

 int counter=0;

 for(num =i; num>=1; num--)

 {

 if(i%num==0)

 {

 counter = counter + 1;

 }

 }

 if (counter ==2)

 {

 //Appended the Prime number to the String

 primeNumbers = primeNumbers + i + " ";

 }

 }

 System.out.println("Prime numbers from 1 to 100 are :");

 System.out.println(primeNumbers);

 }

}

c) Simple calculator
import java.util.Scanner;

public class JavaExample {

 public static void main(String[] args) {

 double num1, num2;
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter first number:");

 /* We are using data type double so that user
 * can enter integer as well as floating point
 * value
 */
 num1 = scanner.nextDouble();
 System.out.print("Enter second number:");
 num2 = scanner.nextDouble();

 System.out.print("Enter an operator (+, -, *, /): ");
 char operator = scanner.next().charAt(0);

 scanner.close();
 double output;

 switch(operator)
 {
 case '+':
 output = num1 + num2;
 break;

 case '-':
 output = num1 - num2;
 break;

 case '*':
 output = num1 * num2;
 break;

 case '/':
 output = num1 / num2;

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 break;

 /* If user enters any other operator or char apart from
 * +, -, * and /, then display an error message to user
 *
 */
 default:
 System.out.printf("You have entered wrong operator");
 return;
 }

 System.out.println(num1+" "+operator+" "+num2+": "+output);
 }
}

Module-3

5)a)
 Discuss the salient features and types of Constructor with programming example. [10]

• Java allows objects to initialize themselves when they are created. This automatic

 initialization is performed through the use of a constructor
 A constructor initializes the instance variables of an object.

 It is called automatically immediately after the object is created but before the new operator

completes.

 1) it is syntactically similar to a method:

 2) it has the same name as the name of its class

 3) it is written without return type, not even void; the default return type of a class

In Box example the dimensions of a box are automatically initialized when an object is constructed.

class Box {

 double width;

 double height;
 double depth;

 Box() {

 System.out.println("Constructing Box");

 width = 10; height = 10; depth = 10;

 }

 double volume() {

 return width * height * depth;

 }

 }

 public static void main(String args[]) {

 Box mybox1 = new Box();
 Box mybox2 = new Box();

 double vol;

 vol = mybox1.volume();

 System.out.println("Volume is " + vol);

 vol = mybox2.volume();

 System.out.println("Volume is " + vol);

 }

 }

 it generates the following results:

Constructing Box

Constructing Box

Volume is 1000.0
Volume is 1000.0

 constructor for the class is being called

Parameterized Constructor: The constructor which takes parameter while creating the object of a

particular class. Here Box constructor is having width, height and depth parameters which will be

initialized at the time of object creation which the supplied values.

 class Box {

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 double width;

 double height;

 double depth;

 Box(double w, double h, double d) {

 width = w; height = h; depth = d;

 }

 double volume(){
 return width * height * depth;

 }

 }

 class BoxDemo {

 public static void main(String args[]) {

 Box mybox1 = new Box(10, 20, 15);

 Box mybox2 = new Box(3, 6, 9);

 double vol;

 vol = mybox1.volume();

 System.out.println("Volume is " + vol);

 vol = mybox2.volume();

 System.out.println("Volume is " + vol);
}

}

Volume is 3000.0

Volume is 162.0

b)

 Explain the following:

a) Use of this keyword

b) Garbage collector

c) Finalize ()

This Keyword:

 Sometimes a method will need to refer to the object that invoked it

 this is always a reference to the object on which the method was invoked

 Typically used to

 Avoid variable name collisions

 Pass the receiver as an argument

 Chain constructors

 Keyword this allows a method to refer to the object that invoked it.

 It can be used inside any method to refer to the current object:

 Box(double w, double h, double d) {

 this.width = w;

 this.height = h;

 this.depth = d;

 }

From the main function we can construct the Box object by:

public static void main(String args[]) {

 Box mybox1 = new Box(10,20,30);

 Box mybox2 = new Box(myBox1); //here the myBox1 object has been passed

This version of Box() operates exactly like the earlier version. The use of this is redundant, but
perfectly correct. Inside Box(), this will always refer to the invoking object. section. This version
of Box() operates exactly like the earlier version. The use of this is redundant, but perfectly
correct. Inside Box(), this will always refer to the invoking object. when a local variable has the
same name as an instance variable, the local variable hides the instance variable.

Garbage Collection:

 Garbage collection is a mechanism to remove objects from memory when they are no
longer needed.

 Garbage collection is carried out by the garbage collector:

1) The garbage collector keeps track of how many references an object has.
 2) when no references to an object exist, that object is assumed to be no longer
needed, and the memory
 occupied by the object can be reclaimed.

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

3) It removes an object from memory when it has no longer any references.
4) Thereafter, the memory occupied by the object can be allocated again.
5) The garbage collector invokes the finalize method.

Finalize() :
 .
 Sometimes an object will need to perform some action when it is destroyed. To handle

such situations, Java provides a mechanism called finalization
 the finalize method is invoked just before the object is destroyed:
 By using finalization, we can define specific actions that will occur when an object is just

about to be reclaimed by the garbage collector.
 To add a finalizer to a class, we simply define the finalize() method. The
 Java run time calls that method whenever it is about to recycle an object of that class.
 Inside the finalize() method, you will specify those actions that must be performed

before an object is destroyed.
 implemented inside a class as:
 protected void finalize() { … }
 implemented when the usual way of removing objects from memory is insufficient, and

some special actions has to be carried out.
 Here, the keyword protected is a specifier that prevents access to finalize() by code

defined outside its class
 It is important to understand that finalize() is only called just prior to garbage collection.

c)

1) Using final to Prevent Overriding::::
 To disallow a method from being overridden, specify final as a modifier at the start of its

declaration.

 Methods declared as final cannot be overridden. The following fragment illustrates final:

 class A {
 final void meth() {

 System.out.println("This is a final method.");

 }

 }

 class B extends A {

 void meth() { // ERROR! Can't override.

 System.out.println("Illegal! ");

 }

 }

 Methods declared as final can sometimes provide a performance enhancement: The compiler is

free to inline calls to them because it “knows” they will not be overridden by a subclass. When a
small final method is called, often the Java compiler can copy the bytecode for the subroutine

directly inline with the compiled code of the calling method, thus eliminating the costly overhead

associated with a method call.

 Inlining is only an option with final methods.

 Normally, Java resolves calls to methods dynamically, at run time. This is called late binding.

However, since final methods cannot be overridden, a call to one can be resolved at compile

time. This is called early binding.

 Using final to Prevent Inheritance::::
 Sometimes you will want to prevent a class from being inherited. To do this, precede the class

declaration with final.


 Declaring a class as final implicitly declares all of its methods as final, too.

 As you might expect, it is illegal to declare a class as both abstract and final since an abstract

class is incomplete by itself and relies upon its subclasses to provide complete implementations.

 Here is an example of a final class:

 final class A {

 // ...

 }

 // The following class is illegal.

 class B extends A { // ERROR! Can't subclass A

 // ...
 }

 As the comments imply, it is illegal for B to inherit A since A is declared as final.

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

6)a)

 import java.io.*;
class Student
 {
 int rollno;
 String name;
 int number_of_subjects;
 int mark[];
 Student(int roll,String stud_name,int noofsub) throws IOException
 {
 rollno=roll;
 name=stud_name;
 number_of_subjects= noofsub;
 getMarks(noofsub);
 }
 public void getMarks(int nosub) throws IOException
 {
 mark=new int[nosub];

 BufferedReader br= new BufferedReader (new InputStreamReader(System.in));
 for (int i=0; i<nosub;i++)
 {

 System.out.println(“Enter “+i+”Subject Marks.:=> “);
 mark[i]=Integer.parseInt(br.readLine());

 System.out.println(“”);
 }
 }
 public void calculateMarks()
 {
 double percentage=0;
 String grade;
 int tmarks=0;
 for (int i=0;i<mark.length;i++) {
 tmarks+=mark[i];
 }
 percentage=tmarks/number_of_subjects;
 System.out.println(“Roll Number :=> “+rollno);
 System.out.println(“Name Of Student is :=> “+name);
 System.out.println(“Number Of Subject :=> “+number_of_subjects);
 System.out.println(“Percentage Is :=> “+percentage);
 if (percentage>=70)
 System.out.println(“Grade Is First Class With Distinction “);
 else if(percentage>=60 && percentage<70)
 System.out.println(“Grade Is First Class”);
 else if(percentage>=50 && percentage<60)
 System.out.println(“Grade Is Second Class”);
 else if(percentage>=40 && percentage<50)
 System.out.println(“Grade Is Pass Class”);
 else
 System.out.println(“You Are Fail”);
 }
 }

class StudentDemo {
 public static void main(String args[])throws IOException {
 int rno,no,nostud;
 String name;

 BufferedReader br= new BufferedReader (new InputStreamReader(System.in));

 System.out.println(“Enter How many Students:=> “);
 nostud=Integer.parseInt(br.readLine());
 Student s[]=new Student[nostud];
 for(int i=0;i<nostud;i++) {

 System.out.println(“Enter Roll Number:=> “);
 rno=Integer.parseInt(br.readLine());

 System.out.println(“Enter Name:=> “);
 name=br.readLine();

 System.out.println(“Enter No of Subject:=> “);

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 no=Integer.parseInt(br.readLine());
 s[i]=new Student(rno,name,no);
 }
 for(int i=0;i<nostud;i++) {
 s[i].calculateMarks();
 }
 }
 }

b)

4 What is Inheritance? What are the different types of Inheritance? Explain the use of super
with a suitable programming example.

Inheritance:

• Allows the creation of hierarchical classifications.
• For creating inheritance:

inheritance is a mechanism wherein a new class is derived from an existing class. In Java, classes may inherit

or acquire the properties and methods of other classes.

A class derived from another class is called a subclass, whereas the class from which a subclass is derived is

called a superclass. A subclass can have only one superclass, whereas a superclass may have one or more
subclasses.

• A class that is inherited is called a superclass. The class that does the inheriting is
 called a subclass.

• Subclass is a specialized version of a superclass.
• To inherit a class, you simply incorporate the definition of one class into another by

 using the extends keyword
• The general form of a class declaration that inherits a superclass is shown here:

 Class subclass-name extends superclass-name {
 // body of class
 }

 A is a superclass for B (In next slide eg.), it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used

by itself.
• Further, a subclass can be a superclass for another subclass.

[5+5]

Super:

 super is a keyword.

 It is used inside a sub-class method definition to call a method defined in the super class. Private

methods of the super-class cannot be called. Only public and protected methods can be called by

the super keyword.

 It is also used by class constructors to invoke constructors of its parent class.

 Super keyword are not used in static Method.

Two general form of super:
 The first calls the superclass’ constructor.

 The second is used to access a member of the superclass that has been hidden by a member of a

subclass

https://en.wikipedia.org/wiki/parent_class

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

 A subclass can call a constructor defined by its superclass by use of the following form of super:

 super(arg-list); //arg-list specifies any arguments needed by the constructor
in the superclass.

 super() must always be the first statement executed inside a subclass’ constructor

 Example:

a) First use of super : to call super class constructor:

class Box{ class BoxWeight entends Box{
 double height; double mass;
 double widht; BoxWeight(double w, double h, double
d, double m) {
 double depth; super(w,h,d);
 Box(double w, double h, double d) { mass=m ;
 width = w; }
 height = h; }
 depth = d;

 double vol() Here the value of height,width, depth in
Boxweight contructor
 { has been initialized by super class constructor
with “super”.
 // body of the function
 }
}

b) Second use of super : to call super class constructor:

 This second form of super is most applicable to situations when member names of a subclass

hide members by the same name in the superclass

 This usage has the following general form:

 super.member //Here, member can be either a method or an
instance variable.

 This : Sometimes a method will need to refer to the object that invoked it

 this is always a reference to the object on which the method was invoked

 Typically used to

 Avoid variable name collisions

 Pass the receiver as an argument

 Chain constructors

 Keyword this allows a method to refer to the object that invoked it.
 It can be used inside any method to refer to the current object:

 Box(double w, double h, double d) {
 this.width = w;
 this.height = h;
 this.depth = d;
 }
Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
 this.width = width;
 this.height = height;
 this.depth = depth;
 }
when a local variable has the same name as an instance variable, the local variable hides the
instance variable

c) Inner class with an example

Inner class means one class which is a member of another class. There are
basically four types of inner classes in java.

1) Nested Inner class
2) Method Local inner classes
3) Anonymous inner classes

4) Static nested classes

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

Nested Inner class can access any private instance variable of outer class.

Like any other instance variable, we can have access modifier private,
protected, public and default modifier.
Like class, interface can also be nested and can have access specifiers.
Following example demonstrates a nested class.

class Outer {
 // Simple nested inner class
 class Inner {
 public void show() {
 System.out.println("In a nested class method");
 }
 }
}
class Main {
 public static void main(String[] args) {
 Outer.Inner in = new Outer().new Inner();
 in.show();
 }
}

Module-4
7)a) Define Interface. Explain how to define, implement and assign variable in interface to perform

“one interface, multiple methods”.

[2+8]

Defining Interface:

An interface is defined much like a class. This is the general form of an interface:
access interface name {
 return-type method-name1(parameter-list);
 return-type method-name2(parameter-list);
 type final-varname1 = value;
 type final-varname2 = value;
 // ...
 return-type method-nameN(parameter-list);
 type final-varnameN = value;
}
When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as public,
the interface can be used by any other code.

 Here is an example of an interface definition.
 Interface in1{
 final int a=3;
 Void display();
 }

Implementing Interface
Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create the
methods defined by the interface. The general form of a class that includes the implements
clause looks like this:
class classname [extends superclass] [implements interface [,interface...]] {
 // class-body
 }
Here two classes class A and class B has implemented interface in1 and they have defined their
own version of display with the help of final variable which is defined in the interface.
Class A implements in1{ Class B implements in1{
 int b; int c;
 Void display(){ void display(){
 b=a+2; b=a+2;
 System.ot.println(“B is “+b); System.ot.println(“B is “+b);
}} }}

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

So by the above example we have implemented perform “one interface, multiople methods”.

b) Multiple Inheritance allows a class to have more than one super class and to inherit features from all

parent class. it is achieved using interface. A Java class can only extend one parent class. Multiple

inheritance is not allowed. Interfaces are not classes, however, and an interface can extend more than one

parent interface. Following is an example of multiple inheritance implemented by interface concepts

nterface vehicleone{

 int speed=90;

 public void distance();

}

interface vehicletwo{

 int distance=100;

 public void speed();

}

class Vehicle implements vehicleone,vehicletwo{

 public void distance(){

 int distance=speed*100;

 System.out.println("distance travelled is "+distance);

 }

 public void speed(){

 int speed=distance/100;

 }

}

class MultipleInheritanceUsingInterface{

 public static void main(String args[]){

 System.out.println("Vehicle");

 obj.distance();

 obj.speed(); }

}

Output is:

distance travelled is 9000

c) Access Protection

In the preceding chapters, you learned about various aspects of Java’s access control

mechanism and its access specifiers. For example, you already know that access to a

private member of a class is granted only to other members of that class. Packages add

another dimension to access control. As you will see, Java provides many levels of

protection to allow fine-grained control over the visibility of variables and methods

within classes, subclasses, and packages. Classes and packages are both means of

encapsulating and containing the name space and scope of variables and methods.

Packages act as containers for classes and other subordinate packages. Classes act as

containers for data and code. The class is Java’s smallest unit of abstraction. Because of

the interplay between classes and packages, Java addresses four categories of visibility

for class members:

• Subclasses in the same package

• Non-subclasses in the same package

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways to

produce the many levels of access required by these categories. Table 9-1 sums up the

interactions. While Java’s access control mechanism may seem complicated, we can

simplify it as follows. Anything declared public can be accessed from anywhere.

Anything declared private cannot be seen outside of its class. When a member does not

have an explicit access

specification, it is visible to subclasses as well as to other classes in the same package.

This is the default access. If you want to allow an element to be seen outside your

current package, but only to classes that subclass your class directly, then declare that

element protected.

Table 9-1 applies only to members of classes. A non-nested class has only two possible

access levels: default and public. When a class is declared as public, it is accessible by

any other code. If a class has default access, then it can only be accessed by other code

within its same package. When a class is public, it must be the only public class declared

in the file, and the file must have the same name as the class.

Importing Packages

Given that packages exist and are a good mechanism for compartmentalizing diverse

classes from each other, it is easy to see why all of the built-in Java classes are stored in

packages. There are no core Java classes in the unnamed default package; all of the

standard classes are stored in some named package. Since classes within packages must

be fully qualified with their package name or names, it could become tedious to type in

the long dot-separated package path name for every class you want to use. For this

reason, Java includes the import statement to bring certain classes, or entire packages,

into visibility. Once imported, a class can be referred to directly, using only its name.

The import statement is a convenience to the programmer and is not technically needed

to write a complete Java program. If you are going to refer to a few dozen classes in

your application, however, the import statement will save a lot of typing.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. This is the general form of the

import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.). There is no practical limit on the

depth of a package hierarchy, except that imposed by the file system. Finally, you

specify either an explicit classname or a star (*), which indicates that the Java compiler

should import the entire package. This code fragment shows both forms in use:

import java.util.Date;

import java.io.*;

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

8) a)

Exception is an abnormal condition that arises in the code sequence.

• Exceptions occur during compile time or run time.

• “throwable” is the super class in exception hierarchy.

• Compile time errors occurs due to incorrect syntax.

• Run-time errors happen when

– User enters incorrect input

– Resource is not available (ex. file)

– Logic error (bug) that was not fixed

Nested try

class NestTry {

 public static void main(String args[]) {

 try {

 int a = args.length;

 int b = 42 / a;

 System.out.println("a = " + a);

 try {

 if(a==1)

 a = a/(a-a);

 if(a==2) {

 int c[] = { 1 };

 c[42] = 99;

 }

 }

 catch(ArrayIndexOutOfBoundsException e) {

 System.out.println("Array index out-of-bounds: " + e);

 }

 }

 catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

 }

 }

 }

When you execute the program with no command-line arguments, a divide-by-zero

exception is generated by the outer try block.

Execution of the program with one

command-line argument generates a divide-by-

zero exception from within the nested try block.

Since the inner block does not catch this exception,

it is passed on to the outer try block, where it is

handled.

If you execute the program with two command-line

arguments, an array boundary exception is

generated from within the inner try block. Here are

sample runs that illustrate each case:

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

 Array index out-of-bounds:

 java.lang.ArrayIndexOutOfBoundsException:42

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

b) static void throwOne() throws IllegalAccessException {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[]) {
 try {
 throwOne();
 } catch (IllegalAccessException e) {
 System.out.println("Caught " + e);
 }
 }
 }

Here is the output generated by running this example program:
inside throwOne
caught java.lang.IllegalAccessException: demo

c)

i) Built-in Exception
 Inside the standard package java.lang, Java defines several exception classes

 The most general of these exceptions are subclasses

 of the standard type RuntimeException. These exceptions need not be included in any method’s throws

list. In the language of Java, these are called unchecked exceptions because the compiler does not check

to see if a method handles or throws these exceptions.

 checked exceptions those exceptions defined by java.lang that must be included in a method’s

throws list if that method can generate one of these exceptions and does not handle it itself.

ii) Uncaught Exception

Before you learn how to handle exceptions in your program, it is useful to see what

happens when you don’t handle them. This small program includes an expression that

intentionally causes a divide-by-zero error:

class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a new

exception object and then throws this exception. This causes the execution of Exc0 to

stop, because once an exception has been thrown, it must be caught by an exception

handler and dealt with immediately. In this example, we haven’t supplied any exception

handlers of our own, so the exception is caught by the default handler provided by the

Java run-time system. Any exception that is not caught by your program will ultimately

be processed by the default handler. The default handler displays a string describing the

exception, prints a stack trace from the point at which the exception occurred, and

terminates the program.

Module-5

9)a)What are Applets? Explain different stages in the lifecycle of Applet [10]

 a) Applets are small applications that are accessed on an Internet server, transported over the

Internet, automatically installed, and run as part of a web document.

 After an applet arrives on the client, it has limited access to resources so that it can produce a

graphical user interface and run complex computations without introducing the risk of viruses or

breaching data integrity.

b)The life cycle of an applet is as shown in the figure below:

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

As shown in the above diagram, the life cycle of an applet starts with init()method and ends with destroy()

method. Other life cycle methods are start(), stop() and paint(). The methods to execute only once in the

applet life cycle are init() and destroy(). Other methods execute multiple times.

init(): The init() method is the first method to execute when the applet is executed. Variable declaration

and initialization operations are performed in this method.

start(): The start() method contains the actual code of the applet that should run. The start() method

executes immediately after the init() method. It also executes whenever the applet is restored, maximized

or moving from one tab to another tab in the browser.

stop(): The stop() method stops the execution of the applet. The stop() method executes when the applet is

minimized or when moving from one tab to another in the browser.

destroy(): The destroy() method executes when the applet window is closed or when the tab containing

the webpage is closed. stop() method executes just before when destroy() method is invoked. The

destroy() method removes the applet object from memory.

paint(): The paint() method is used to redraw the output on the applet display area. The paint() method

executes after the execution of start() method and whenever the applet or browser is resized.

 The method execution sequence when an applet is executed is:

init() start() paint()

The method execution sequence when an applet is closed is:

 stop() destroy()

b)Type wrappers

 Using objects primitive data type values would add an unacceptable overhead to

even the simplest of calculations. Thus, the primitive types are not part of the object

hierarchy, and they do not inherit Object.

❖ Despite the performance benefit offered by the primitive types, there are times

when you will need an object representation.

❖ To handle these (and other) situations, Java provides type wrappers, which are

classes that encapsulate a primitive type within an object.

❖ The type wrappers are Double, Float, Long, Integer, Short, Byte, Character,

and Boolean. These classes offer a wide array of methods that allow you to fully

integrate the primitive types into Java’s object hierarchy.

Transient and volatile modifiers

Java defines two interesting type modifiers: transient and volatile.

These modifiers are used to handle somewhat specialized situations.

Transient Modifiers: When an instance variable is declared as transient, then its value

need not persist when an object is stored. For example:

class T { transient int a; // will not persist

 int b; // will persist }

 Here, if an object of type T is written to a persistent storage area, the contents of a

would not be saved, but the contents of b would.

Volatile modifier: The volatile modifier tells the compiler that the variable modified by

volatile can be changed unexpectedly by other parts of the program. One of these

situations involves multithreaded programs. In a multithreaded program, sometimes two

or more threads share the same variable.

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

For efficiency considerations, each thread can keep its own, private copy of such a

shared variable. The real (or master) copy of the variable is updated at various times,

such as when a synchronized method is entered.

All that really matters is that the master copy of a variable always reflects its current

state. To ensure this, simply specify the variable as volatile, which tells the compiler that

it must always use the master copy of a volatile variable (or, at least, always keep any

private copies up-to-date with the master copy, and vice versa). Also, accesses to the

master variable must be executed in the precise order in which they are executed on any

private copy

c) Applet tags

Code

Width Height

Name

Codebase

Alt

Param

Vspace

Hspace

Align

10)a)

b)

VTU ConKnLeEct DApr.pMDo.Sw.nSlohadesNhogwirfiroCmolGleogoegleofPElanygSitnoereerfoinrgNo&teTse, QchPn'so, Plorgevyi,oLusibSraemry,RBeseullat gaandviLot More

Overloading contractor

When working with overloaded constructors, it is sometimes useful for one constructor to invoke another.

In Java, this is accomplished by using another form of the this keyword.

The general form is shown here:

 this(arg-list)
When this() is executed, the overloaded constructor that matches the parameter list specified by arg-list is
executed first. Then, if there are any statements inside the original constructor, they are executed. The call

to this() must be the first statement within the constructor. Take the following example which has two

versions:

	Instant VTU Updates, Notes, QP’s,
	Syntax
	Example

