50, will be treated as malpractice.
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Fourth Semester B.E. Degree Examination, June/July 2019
Kinematics of Machinery
Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a
b.

2 a
b.

3

4 a.
b.

5 a

Module-1
Define ‘degree of freedom’ and find degree of freedom for the chains sho;:vn in Fig.Ql(a).
E
C G 5
'y C )——"_‘]PD
D R A\W g
A
(i) (i) (iii) AB=CD = EF
& AE = BF
Fig.Ql(a) (10 Marks)

Define ‘inversion of a Kinematic chain®. A four bar mechanism has links of lengths 150mm,
250mm, 300mm and frame Lo mm. Find the range of Lo if the mechanism has to work as
(i) Double crank mechanism (ii) Crank-rocker mechanism. (10 Marks)

OR
Sketch a neat, proportionate ‘Peaucellier’s mechanism’. State geometric relationships among

links. Identify the point tracing the straight line and prove that the point traces straight line.
(10 Marks)

Draw ‘Crank and Slotted lever’ type of quick return motion mechanism showing the
positions of crank clearly for extreme positions of lever. If the crank and frame are 200 mm,
800mm, find the ratio of time of return to time of cutting if the crank rotates uniformly. Also
find angle of oscillation of lever. (10 Marks)

In a four bar mechanism ABCD, AD is fixed link of 120 mm long. The crank AB is 30mm
and rotates at 100 rpm clockwise, while CD = 60 mm oscillates about D. BC and AD are of
same length. Find the angular velocity of link CD when angle BAD = 60° by

(i) relative velocity method (i) instantaneous centre method. (20 Marks)

OR

State and prove Kennedy’s theorem., (08 Marks)
Explain the procedure to construct ‘Klein’s construction” to determine the velocity and

acceleration of a slider crank mechanism in which crank is rotating uniformly. (12 Marks)

For the slider crank mechanism shown in Fig.Q5(a), write (i) loop closure equation
(ii) differentiate loop closure equation with respect to time to get velocity equation
(iii) differentiate velocity equation with respect to time to get acceleration equation.

Fig.Q5(a) (08 Marks)

| of2
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5i0.05(a), if r2 = 100mm r3 = 350mm, 6; = 60°, find angular velocity and angular
b liEFIggs) S crank rotates uniformly. at 600 rpm in CCW direction.

ion of connecting rod if
acceleratio g on,

OR
6 a Forthe 4-bar mechanism shown in Fig.Q6, obtain Frendenstein’s equation. (08 Marks)

Fig.Q6
| < x <3 accurate at x = 1.1339, x =2 and

= ifry = = 30°, 0, = 90°, b = 45° and ;= 135° with respect to Fig.Q6.
x = 2.866 if ry = 100mm, 85 = 30°, 0 = 90°, s by i

: 3
b. Find r2, 15 and 1y to generate a function y = X7,

Module-4
(08 Marks)

Define ‘pitch circle’, ‘circular pitch’, ‘diametral pitch’ and ‘module’. '
Obtain an expression for the minimum number of teeth on pinion to avoid interference. )
(12 Marks)

OR
8 An epicyclic gear train consists of a sun-wheel S, a stationary internal gear E and three
identical planet wheels P carried on a star shaped planet carrier C. The size of different tooth
wheels are such that the planet carrier C rotates at 1/5" of the speed of the sunwheel S. The
no. of teeth on sun-wheel is 16. The driving torque on the sun-wheel is 100 N-m. Determine

(i) no. of teeth on P and E. (ii) Torque required to keep the internal gear stationary.
2 (20 Marks)

Module-5
9 From the following data draw the profile of a cam in which the follower moves with SHM
during ascent while it moves with uniform acceleration and deceleration during descent.
Lift of follower : 4 cm

Cam rotates in anticlockwise
Angle of ascent : 48°

Least radius of cam : 5 cm :
Angle of dwell between ascent and descent ; 42° :
Angle of descent = 60°

The diameter of roller = 3 cm
If cam rotates at 360 rpm, find maximum velocity and acceleration of the follower during
(20 Marks)

descent,

OR

Explain with sketch in brief ‘radial cam’ and ‘cylindrical cam’. (06 Marks)
and acceleration for a flat faced follower in

(14 Marks)

10 a
b. Obtain expressions for displacement, velocity
contact with circular flank of a cam.

ok ok ok %

20f2



[a]

Degrees of freedom: An unconstrained rigid body moving in space can have three translations and three
rotational motions (that is six motions) about three mutually perpendicular axes. The number of degrees
of freedom of a kinematic pair is defined as the number of independent relative motions, both
translational and rotational that a kinematic pair can have.

Degrees of freedom = 6 — number of restraints

T gro == - ;
- &
C 9

o

(i)

TP rrees et

(ii)

C

A

[

b D

7777777777 ° B

(iii) AB = CD = EF
& AE = BF

Fig. 1a

Q) Nn=5 j':g : \j;:.z J: IX2 4+ 2x2 =6 | hﬁo;‘I\f*O;jf‘LO/' i
F=3trn,-p-2(-5,)-h-F = O
f.f=2 jn2e [ 470 h=]
g [f-o) i<t = |
r J 72 :Jt;g s.J=6;

F=3(s-1-1) -2(6-2)-0 -0 = !

[b]

Inversion of Kinematic chain: A kinematic chain becomes a mechanism when one of its links is fixed.
Therefore, the number of mechanisms that can be obtained is as many as the number of links in the
kinematic chain. This method of obtaining different mechanisms by fixing different links of a kinematic
chain is called inversion of the mechanism.

The relative motion between various links is not altered as a result of inversion, but their absolute motion

with respect to the fixed link may alter drastically.
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[a]

Peaucellier mechanism
It consists of a fixed link 001 and the other straight links O1A, OC, OD, AD, DB, BC and CA are connected
by turning pairs at their intersections. The pin at A is constrained to move along the circumference of a
circle with the fixed diameter OP, by means of the link O,A.
AC=CB=BD=DA:0C=0D:and 00; =0;A
It may be proved that the product OA x OB remains constant, when the link O;A rotates. Join CD to bisect
AB atR.
Now from right angled triangles ORC and BRC, We have
0C? = OR* + RC? (i)
and BC? = RB% + RC? ..(ii)
subtratcing equation (ii) from (i), we have
OC’- BC® = OR’ - RB®
= (OR + RB) (OR-RB)
= 0B x OA
Since OC and BC are of constant length, therefore the product OB x OA remains constant. Hence the point
B traces a straight path perpendicular to the diameter OP.

C

Fig 2a.: Peaucellier mechanism




Crank and slotted lever quick return motion mechanism

[b]

This mechanism is mostly used in shaping machines, slotting machines and in rotary internal combustion

engines. In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed. The link 3 corresponds
to the connecting rod of a reciprocating steam engine.

The driving crank CB revolves with uniform angular speed about the fixed centre C

A sliding block attached to the crank pin at B slides along the slotted bar AP and thus causes AP to oscillate
about the pivoted point A. A short link PR transmits the motion from AP to the ram which carries the tool
and reciprocates along the line of stroke R1R2. The line of stroke of the ram (i.e. R1R2) is perpendicular to
AC produced.

In the extreme positions, AP1 and AP2 are tangential to the circle and the cutting tool is at the end of the
stroke. The forward or cutting stroke occurs when the crank rotates from the position CB1 to CB2 (or
through an angle B) in the clockwise direction. The return stroke occurs when the crank rotates from the

position CB2 to CB1 (or through angle a) in the clockwise direction. Since the crank has uniform angular
speed,

Therefore,

Time of cutting stroke B

360° — a
=== or
Time of returnstroke a 360°—pf

: —— = Cutting stroke
Connectin
tod \g 4— Return stroke

Line of
— | ,H,a-m ’|—[‘ TDDI f ine o
e

rd
- . "Ra
- - 11 I
-
-

1| i PE"
\ |\ Slider (Link 1)

Crank (Link 2}
B 'f / ~

_ , Fixed
Slotted bar \
(Link 4) el

Fig.2b: Crank and Slotted lever quick return motion mechanism
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[a]

Solution. Given : Np, =120 rp.m. or g, =2 1 120/60 = 12.568 rad/s

velocity of B. (because 4 1s a fixed point),
Vpa = Vg = gy ¥ AB=12.568 % 0.04=0.503 m/s
- C

A 150 D
(@) Space diagram (All dimensions in mm). (b) Velocity diagram.

Fig. 7.7

velocity diagram, as shown in Fig. 7.7 (b). 1s drawn as discussed below :

with respect to 4 or simply velocity of B (i.e. vy, or vp) such that

vector ab = vga = V= 0.503 m/s

By measurement, we find that

Vep = Ve = vector de = 0.385 m/s
We know that CD=80mm=0.08 m
. Angular velocity of link CD,

vep  0.385

0 == —-__  _ rad/ 1< Ans.
DcD D008 4.8 rad/s (clockwise about D) Ans

[a]

Since the length of crank 4 B =40 mm = 0.04 m, therefore velocity of B with respectto 4 or

First of all, draw the space diagram to some suitable scale. as shown in Fig. 7.7 (a). Now the

1. Since the link 4D 1s fixed, therefore points @ and d are taken as one point in the velocity
diagram. Draw vector ab perpendicular to B 4, to some suitable scale. to represent the velocity of B

2. Now from point b, draw vector be perpendicular to CB to represent the velocity of C with
respect 10 B (i.e. vp) and from point d, draw vector dc perpendicular to CD to represent the velocity
of C with respect to D or simply velocity of C (i.e. v or v.). The vectors be and de intersect at c.

Aronhold Kennedy (or Three Centres in Line) Theorem

relative plane motion. The number of instantaneous centres (N) is given by

The Aronhold Kennedy’s theorem states that if three bodies move relatively to each other, they have

three instantaneous centres and lie on a straight line. Consider three kinematic links A, B and C having




_nn-1) 33-1)
N = > = > =3

Where n = Number of links = 3

Fig.4a: Aronhold Kennedy’s theorem

The two instantaneous centres at the pin joints of B with A, and C with A (i.e. I, and ) are the
permanent instantaneous centres. According to Aronhold Kennedy’s theorem, the third instantaneous
centre I, must lie on the line joining I, and /.. In order to prove this, let us consider that the
instantaneous centre /. lies outside the line joining I, and /,. as shown in Fig.1.

The point I, belongs to both the links B and C. Let us consider the point I, on the link B. Its velocity vgc
must be perpendicular to the line joining I, and I,.. Now consider the point /5. on the link C. Its velocity vgc
must be perpendicular to the line joining /,c and /..

The velocity of the instantaneous centre is same whether it is regarded as a point on the first link or as a
point on the second link. Therefore, the velocity of the point /,c cannot be perpendicular to both lines /4,
Ipe and Iy¢ Ipc unless the point /. lies on the line joining the points I, and /... Thus the three instantaneous
centres (lgp, loc and I,c) must lie on the same straight line. The exact location of /.. on line I, I5c depends

upon the directions and magnitudes of the angular velocities of B and C relative to A.

[b]

Klien’s Construction

Let OC be the crank and PC the connecting rod of a reciprocating steam engine, as shown in Fig. 4. Let the
crank makes an angle 6 with the line of stroke PO and rotates with uniform angular velocity w rad/s in a
clockwise direction. The Klien’s velocity and acceleration diagrams are drawn as discussed below:

Klien’s velocity diagram
First of all, draw OM perpendicular to OP; such that it intersects the line PC produced at M. The triangle

OCM is known as Klien’s velocity diagram. In this triangle OCM,
OM may be regarded as a line perpendicular to PO,

CM may be regarded as a line parallel to PC, and ...(It is the same line.)




CO may be regarded as a line parallel to CO.

We have already discussed that the velocity diagram for given configuration is a triangle ocp as shown in
Fig. 4. If this triangle is revolved through 90°, it will be a triangle oc; p;, in which oc; represents veo (i.e.
velocity of C with respect to O or velocity of crank pin C) and is paralel to OC, op; represents vpg (i.e.
velocity of P with respect to O or velocity of cross-head or piston P) and is perpendicular to OP, and c1p;
represents vpc (i.e. velocity of P with respect to C) and is parallel to CP. A little consideration will show that

the triangles oc;p; and OCM are similar. Therefore,

oc1 _ op1 _ aipa
oc oM CM

= w (a constant)

or Yco _ Tro _ Vpc _

oc oM (M

Therefore, Veo = W X OC; vpo= w x OM and vpc= w x CM

Thus, we see that by drawing the Klien’s velocity diagram, the velocities of various points may be obtained

without drawing a separate velocity diagram.

(@) Klien’s acceleration diagram. (b) Velocity diagram. (¢) Acceleration diagram.
Fig. 4b: Klein’s construction

Klien’s acceleration diagram
The Klien’s acceleration diagram is drawn as discussed below:

1. First of all, draw a circle with C as centre and CM as radius.

2. Draw another circle with PC as diameter. Let this circle intersect the previous circle at Kand L.

3. Join KL and produce it to intersect PO at N. Let KL intersect PC at Q. This forms the quadrilateral

CQNO, which is known as Klien’s acceleration diagram.

We have already discussed that the acceleration diagram for the given configuration is as shown in Fig. 6
(c). We know that

i) o'c'represents a’co (i.e. radial component of the acceleration of crank pin C with respect to O)




and is parallel to CO;
i) c'xrepresents a'pc (i.e. radial component of the acceleration of crosshead or piston P with respect
to crank pin C) and is parallel to CP or CQ;
i) xp'represents a'pc (i.e. tangential component of the acceleration of P with respect to C) and is
parallel to QN (because QN is perpendicular to CQ); and
iv) o'p'represents apo (i.e. acceleration of P with respect to O or the acceleration of piston P) and is
parallel to PO or NO.
A little consideration will show that the quadrilateral o'c’x p' [Fig. 6 (c)] is similar to quadrilateral CQNO
[Fig. 4]. Therefore,
% = % = ZiN = % = w? (a constant)
aco _ apc _ Abc _Aro _ w?
oc CQ QN NO

Therefore,  a'co= w?x OC; a'pc-w? x CQ

a'pc= w? x QN ; and apo - w> x NO
Thus we see that by drawing the Klien’s acceleration diagram, the acceleration of various points may be

obtained without drawing the separate acceleration diagram.
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[a]

1. Pitch circle. It is an imaginary circle which by pure rolling action, would give the same motion as

the actual gear.




2. Circular pitch. It is the distance measured on the circumference of the pitch circle from a point of
one tooth to the corresponding point on the next tooth. It is usually denoted by Pc.
Mathematically,

Circular pitch, Pc =« D/T
Where, D = Diameter of the pitch circle, and
T = Number of teeth on the wheel.
A little consideration will show that the two gears will mesh together correctly, if the two wheels
have the same circular pitch.
3. Diametral pitch. It is the ratio of number of teeth to the pitch circle diameter in mm. It is denoted

by Pd . Mathematically,

. . T
Diametral pitch, P, = - = Plc
D
But, P. = ”?
Where, T = Number of teeth, and
D = Pitch circle diameter.
4. Module. It is the ratio of the pitch circle diameter in mm to the number of teeth.

It is usually denoted by m. Mathematically, m = D/T

[b] | Minimum Number of Teeth on the Pinion in Order to Avoid Interference

In order to avoid interference, the addendum circles for the two mating gears must cut the common
tangent to the base circles between the points of tangency. The limiting condition reaches, when the
addendum circles of pinion and gear wheel pass through points N and M (see Fig. 2) respectively.
Let t = Number of teeth on the pinion,

T = Number of teeth on the wheel,

m = Module of the teeth,

r = Pitch circle radius of pinion = m.t/ 2

G=Gearratio=T/t=R/r

¢=Pressure angle or angle of obliquity.
From triangle O1NP,
(O:N)? = (O;P) *+ (PN) *- 2x0O,PxPN.cosO;PN

= r* + R%sin’} - 2r.Rsing.cos (90°+ ¢)  ....(since PN = O,Psin ¢ = Rsin ¢)




202 2
=r? [1+R Sn'0 y 2o Q] =r? [1+§(§+2)sin2®]

72 r

Therefore, limiting radius of the pinion addendum circle,

R /R _ mt T (T _
ON =r 1+—(—+2>sm2®=— 1+—(—+2)sm2®
r\r 2 t\t

Let Am.m = Addendum of the pinion, where Ay, is a fraction by which the standard addendum of
one module for the pinion should be multiplied in order to avoid interference.
We know that the addendum of the pinion = O;N — O,P

Therefore,
T . .
AmmzmTt 1+§(?+2)5m2®_m7t (smceOlP:r:mTt)
_mt 1+T(T+2) n?@ — 1
= 7 sin
A _L 1+T(T+2) n@g — 1
m=3 7 sin
Therefore,

24,,

J1 +%(§+ 2) sin’p — 1

t =

, 24,,

J1 + GG + 2)sin*p —1

This equation gives the minimum number of teeth required on the pinion in order to avoid

interference.




TR EUTE)

Solution -

(i)

—
=

Fig : 7.31
Number of teeth on different wheels
The given arrangement is shown in Fig. 7.31
As the minimum number of teeth on any wheel js
Since the pitch circle radius IS proportional to nu

16, take the number of (ee

mber of teeth ang the gea

rs have same pitch

th on sun wheel Z =16.




7 alar Column

o907
ition of motion
conditio Planet carrier Sunwheel | Planet wheel
C Internal
fix the planet 0 +1 _%s Ls Zp _ %
carrier 'C' and give ' Zp Zy'Zy  Z,
+ 1 rev to sunwheel §
L
Multiply by x 0 x L X 8. X \
Zy Ze
o, =
Add y y y+x \—%5-..‘ Y-z \
P E

Planet carrier C rotates at 1/5 of the speed of the Sunwheel S. i.c., For every 5 revolutions of the

Sunwheel S, planet carrier € will make 1 revolution.
y=landy+x = 5§

e, l+x = 5, ~x=4
Internal gear £ is stationary
bt TS
8, ) oy i)
“E
Zo
: l———'s‘.-‘; =0
ic., =
Zyg
nl, = AL
= 4x16=064

i.e.. Number of teeth on internal gear E, Z, = 64
From equation (i)

Z.—-Z 64-16

=24

i.e.. Number of teeth on planet wheel P, Z,=24

(if) Torque necessary to keep the internal gear stationary.

From energy equation
T,ns+Tc"c+T£"£ =0

je. T+ Tenc =0 (-

100x5+T %1

]
o

Torque = 500 Nm
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[a]

1. Radial or disc cam: In radial cams, the follower reciprocates or oscillates in a direction
perpendicular to the cam axis. The cams as shown in Fig. (a) to (f) are all radial cams.

Flat faced
« follower

I’V//A

1 Knife edge r  Roller
4« follower L« follower

% ZMN%% %
I

%

=

Cam Cam Cam
{(a) Cam with knife () Cam with roller (¢) Cam with flat
edge follower. follower. faced follower.
« follower

7
!

2% e 2
I I

,,h Spherical faced Offset follower H"f
|
i

Cam N Cam
1_ Cam
—] Oftset
(d) Cam with spherical (e) Cam with spherical () Cam with offset

faced follower. faced follower. follower.




2. Cylindrical cam: In cylindrical cams, the follower reciprocates or oscillates in a direction parallel to
the cam axis. The follower rides in a groove at its cylindrical surface.

7{\
——

(a) Cylindrical cam with reciprocating

tollower.

2
)

(£) Cylindrical cam with oscillating follower.

10
[b]

When the flanks of the cam connecting the base circle and nose are of convex circular arcs, then the cam
is known as circular arc cam. A symmetrical circular arc cam operating a flat-faced follower, in which O
and Q are the centres of cam and nose respectively. EF and GH are two circular flanks whose centres lie at
P and P’ respectively. The centres P and P’ lie on lines EO and GO produced.

Let r;y = Minimum radius of the cam or radius of the base circle = OE,

r, = Radius of nose,

R = Radius of circular flank = PE,

2a = Total angle of action of cam = angle EOG,

o = Semi-angle of action of cam or angle of ascent = angle EOK, and

& = Angle of action of cam on the circular flank.

Circular arc cam with flat face of the follower having contact with the circular flank.

We shall consider the following two cases :

1. When the flat face of the follower has contact on the circular flank, and

2. When the flat face of the follower has contact on the nose.

In deriving the expressions for displacement, velocity and acceleration of the follower for the above two
cases, it is assumed that the cam is fixed and the follower rotates in the opposite sense to that of the cam.
In Fig. 10b, the cam is rotating in the clockwise direction and the follower rotates in the counter-clockwise
direction.




Flat faced
follower P!

\-Circular arc cam

Fig. 10b
When the flat face of the follower has contact on the circular flank. First of all, let us consider that the

flat face of the follower has contact at E (i.e. at the junction of the circular flank and base circle). When the
cam turns through an angle 8 (less than ¢ ) relative to the follower, the contact of the flat face of the
follower will shift from E to C on the circular flank, such that flat face of the follower is perpendicular to
PC. Since OB is perpendicular to BC, therefore OB is parallel to PC. From O, draw OD perpendicular to PC.
From the geometry of the figure, the displacement or lift of the follower (x) at any instant for contact on

the circular flank, is given by

x=B4=BO-A0=CD-EO R ()]
We know that
CD =PC—-PD =PE—-0OPcosH

=0OP+0OE—-0OPcos6=0FE +0OP(1-cos9)




Substituting the value of CD in equation (),

x=0E+OP(l1-cos8)— EO=OP(l1-cosH)

=(PE—-OE)(1-cos08)=(R—#)(l—cos9) ... (@)
Differentiating equation (#7) with respect to #. we have velocity of the follower.
dx dx_do dx ... de
T=—=—X—=—XO substituting — =
dt  do dt db dt
=(R—r)smOxm=w(R—7)smb N (71))]

From the above expression. we see that at the beginning of the ascent (i.e. when 8 =0 ), the
velocity is zero (because sin 0 = 0 ) and it increases as @ increases. The velocity will be maximum

when © = ¢, i.e. when the contact of the follower just shifts from circular flank to circular nose.
Therefore maximum velocity of the follower.

Vinax = @(R—1)sind
Now differentiating equation (iii) with respect to . we have acceleration of the follower,
dv dv_ dB dv
=—=—xX—=—xX[
dt de dt de
:m(R—:j}cosme:on (R—1)cosB N (2D)]

From the above expression. we see that at the beginning of the ascent (i.e. when § =0 ), the
acceleration is maximum (because cos 0 = 1 ) and it decreases as @ increases. The acceleration
will be minimum when 6 = ¢.

Maximum acceleration of the follower.

2
Ay = O (R—1)

and minimum acceleration of the follower,

Appin = w® (R— 11)C0S O




