
 

 

 



 

 

 

 



 

 

1 
[a] 

 

Degrees of freedom: An unconstrained rigid body moving in space can have three translations and three 

rotational motions (that is six motions) about three mutually perpendicular axes. The number of degrees 

of freedom of a kinematic pair is defined as the number of independent relative motions, both 

translational and rotational that a kinematic pair can have. 

Degrees of freedom = 6 – number of restraints 

 

 
Fig. 1a 
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[b] 
Inversion of Kinematic chain: A kinematic chain becomes a mechanism when one of its links is fixed. 

Therefore, the number of mechanisms that can be obtained is as many as the number of links in the 

kinematic chain. This method of obtaining different mechanisms by fixing different links of a kinematic 

chain is called inversion of the mechanism. 

The relative motion between various links is not altered as a result of inversion, but their absolute motion 

with respect to the fixed link may alter drastically. 



 

 

2 
[a] 

Peaucellier mechanism  
It consists of a fixed link OO1 and the other straight links O1A, OC, OD, AD, DB, BC and CA are connected 
by turning pairs at their intersections. The pin at A is constrained to move along the circumference of a 
circle with the fixed diameter OP, by means of the link O1A.  

AC = CB = BD = DA : OC =OD: and OO1 = O1A 
It may be proved that the product OA × OB remains constant, when the link O1A rotates. Join CD to bisect 
AB at R. 

Now from right angled triangles ORC and BRC, We have 
OC2 = OR2 + RC2    ..(i) 

and    BC2 = RB2 + RC2     ..(ii) 
subtratcing equation (ii)  from (i), we have 

OC2 - BC2 = OR2 - RB2 

       = (OR + RB) (OR-RB) 
    = OB × OA 

Since OC and BC are of constant length, therefore the product OB × OA remains constant. Hence the point 
B traces a straight path perpendicular to the diameter OP.  

 
 

Fig 2a.: Peaucellier mechanism 



 

2 
[b] 

Crank and slotted lever quick return motion mechanism 

This mechanism is mostly used in shaping machines, slotting machines and in rotary internal combustion 

engines. In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed. The link 3 corresponds 

to the connecting rod of a reciprocating steam engine.  

The driving crank CB revolves with uniform angular speed about the fixed centre C.  

A sliding block attached to the crank pin at B slides along the slotted bar AP and thus causes AP to oscillate 

about the pivoted point A. A short link PR transmits the motion from AP to the ram which carries the tool 

and reciprocates along the line of stroke R1R2. The line of stroke of the ram (i.e. R1R2) is perpendicular to 

AC produced.  

In the extreme positions, AP1 and AP2 are tangential to the circle and the cutting tool is at the end of the 

stroke. The forward or cutting stroke occurs when the crank rotates from the position CB1 to CB2 (or 

through an angle β) in the clockwise direction. The return stroke occurs when the crank rotates from the 

position CB2 to CB1 (or through angle α) in the clockwise direction. Since the crank has uniform angular 

speed, 

Therefore,  
𝑻𝒊𝒎𝒆 𝒐𝒇 𝒄𝒖𝒕𝒕𝒊𝒏𝒈 𝒔𝒕𝒓𝒐𝒌𝒆

𝑻𝒊𝒎𝒆 𝒐𝒇 𝒓𝒆𝒕𝒖𝒓𝒏 𝒔𝒕𝒓𝒐𝒌𝒆
=

𝜷

𝜶
=

𝜷

𝟑𝟔𝟎° − 𝜷
 𝒐𝒓 

𝟑𝟔𝟎° − 𝜶

𝜶
 

 

 
Fig.2b: Crank and Slotted lever quick return motion mechanism 
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[a] 
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[a] 
Aronhold Kennedy (or Three Centres in Line) Theorem 

The Aronhold Kennedy’s theorem states that if three bodies move relatively to each other, they have 

three instantaneous centres and lie on a straight line. Consider three kinematic links A, B and C having 

relative plane motion. The number of instantaneous centres (N) is given by 



𝑁 =
𝑛(𝑛 − 1)

2
=

3(3 − 1)

2
= 3 

Where   n = Number of links = 3 

 
Fig.4a: Aronhold Kennedy’s theorem 

The two instantaneous centres at the pin joints of B with A, and C with A (i.e. Iab and Iac) are the 

permanent instantaneous centres. According to Aronhold Kennedy’s theorem, the third instantaneous 

centre Ibc must lie on the line joining Iab and Iac. In order to prove this, let us consider that the 

instantaneous centre Ibc lies outside the line joining Iab and Iac as shown in Fig.1.  

The point Ibc belongs to both the links B and C. Let us consider the point Ibc on the link B. Its velocity vBC 

must be perpendicular to the line joining Iab and Ibc. Now consider the point Ibc on the link C. Its velocity vBC 

must be perpendicular to the line joining Iac and Ibc. 

The velocity of the instantaneous centre is same whether it is regarded as a point on the first link or as a 

point on the second link. Therefore, the velocity of the point Ibc cannot be perpendicular to both lines Iab 

Ibc and Iac Ibc unless the point Ibc lies on the line joining the points Iab and Iac. Thus the three instantaneous 

centres (Iab, Iac and Ibc) must lie on the same straight line. The exact location of Ibc on line Iab Iac depends 

upon the directions and magnitudes of the angular velocities of B and C relative to A. 
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[b] 

Klien’s Construction 

Let OC be the crank and PC the connecting rod of a reciprocating steam engine, as shown in Fig. 4. Let the 

crank makes an angle θ with the line of stroke PO and rotates with uniform angular velocity ω rad/s in a 

clockwise direction. The Klien’s velocity and acceleration diagrams are drawn as discussed below: 

Klien’s velocity diagram 
First of all, draw OM perpendicular to OP; such that it intersects the line PC produced at M. The triangle 

OCM is known as Klien’s velocity diagram. In this triangle OCM, 

OM may be regarded as a line perpendicular to PO, 

CM may be regarded as a line parallel to PC, and     ...(It is the same line.) 



CO may be regarded as a line parallel to CO. 

We have already discussed that the velocity diagram for given configuration is a triangle ocp as shown in 

Fig. 4. If this triangle is revolved through 90°, it will be a triangle oc1 p1, in which oc1 represents vCO (i.e. 

velocity of C with respect to O or velocity of crank pin C) and is paralel to OC, op1 represents vPO (i.e. 

velocity of P with respect to O or velocity of cross-head or piston P) and is perpendicular to OP, and c1p1 

represents vPC (i.e. velocity of P with respect to C) and is parallel to CP. A little consideration will show that 

the triangles oc1p1 and OCM are similar. Therefore, 

𝑜𝑐1

𝑂𝐶
=

𝑜𝑝1

𝑂𝑀
=

𝑐1𝑝1

𝐶𝑀
= 𝜔  𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

or     
𝑣𝐶𝑂

𝑂𝐶
=

𝑣𝑃𝑂

𝑂𝑀
=

𝑣𝑃𝐶

𝐶𝑀
= 𝜔 

Therefore,   vco = ω × OC; vPO= ω × OM and vPC= ω × CM 

Thus, we see that by drawing the Klien’s velocity diagram, the velocities of various points may be obtained 

without drawing a separate velocity diagram. 

 

Fig. 4b: Klein’s construction 

Klien’s acceleration diagram 

The Klien’s acceleration diagram is drawn as discussed below: 

1. First of all, draw a circle with C as centre and CM as radius. 

2. Draw another circle with PC as diameter. Let this circle intersect the previous circle at K and L. 

3. Join KL and produce it to intersect PO at N. Let KL intersect PC at Q. This forms the quadrilateral 

CQNO, which is known as Klien’s acceleration diagram. 

We have already discussed that the acceleration diagram for the given configuration is as shown in Fig. 6 

(c). We know that 

i) o'c' represents ar
CO (i.e. radial component of the acceleration of crank pin C with respect to O ) 



and is parallel to CO; 

ii) c'x represents ar
PC (i.e. radial component of the acceleration of crosshead or piston P with respect 

to crank pin C) and is parallel to CP or CQ; 

iii) xp' represents at
PC (i.e. tangential component of the acceleration of P with respect to C ) and is 

parallel to QN (because QN is perpendicular to CQ); and 

iv)  o'p' represents aPO (i.e. acceleration of P with respect to O or the acceleration of piston P) and is 

parallel to PO or NO. 

A little consideration will show that the quadrilateral o'c'x p' [Fig. 6 (c)] is similar to quadrilateral CQNO 

[Fig. 4]. Therefore, 

𝑜′𝑐′

𝑂𝐶
=

𝑐′𝑥

𝐶𝑄
=

𝑥𝑝′

𝑄𝑁
=

𝑜′𝑝′

𝑁𝑂
= 𝜔2 (𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝑎𝐶𝑂
𝑟

𝑂𝐶
=

𝑎𝑃𝐶
𝑟

𝐶𝑄
=

𝑎𝑃𝐶
𝑡

𝑄𝑁
=

𝑎𝑃𝑂

𝑁𝑂
= 𝜔2  

Therefore,  ar
CO = ω2 × OC; ar

PC = ω
2 × CQ 

at
PC = ω2 × QN ; and aPO = ω

2 × NO 

Thus we see that by drawing the Klien’s acceleration diagram, the acceleration of various points may be 

obtained without drawing the separate acceleration diagram. 
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7 
[a] 

1. Pitch circle. It is an imaginary circle which by pure rolling action, would give the same motion as 

the actual gear. 



2. Circular pitch. It is the distance measured on the circumference of the pitch circle from a point of 

one tooth to the corresponding point on the next tooth. It is usually denoted by Pc. 

Mathematically, 

Circular pitch, Pc = π D/T 

Where, D = Diameter of the pitch circle, and 

    T = Number of teeth on the wheel. 

A little consideration will show that the two gears will mesh together correctly, if the two wheels 

have the same circular pitch. 

3. Diametral pitch. It is the ratio of number of teeth to the pitch circle diameter in mm. It is denoted 

by Pd . Mathematically, 

  Diametral pitch, 𝑃𝑑 =
𝑇

𝐷
=

𝜋

𝑃𝑐
  

    But,  𝑃𝑐 =
𝜋𝐷

𝑇
 

Where, T = Number of teeth, and 

   D = Pitch circle diameter.  

4. Module. It is the ratio of the pitch circle diameter in mm to the number of teeth. 

 It is usually denoted by m. Mathematically, m = D/T 

 

 

 

7 
[b] Minimum Number of Teeth on the Pinion in Order to Avoid Interference 

 

In order to avoid interference, the addendum circles for the two mating gears must cut the common 

tangent to the base circles between the points of tangency. The limiting condition reaches, when the 

addendum circles of pinion and gear wheel pass through points N and M (see Fig. 2) respectively. 

Let  t = Number of teeth on the pinion, 

T = Number of teeth on the wheel, 

m = Module of the teeth, 

r = Pitch circle radius of pinion = m.t / 2 

G = Gear ratio = T / t = R / r 

𝜙= Pressure angle or angle of obliquity. 

From triangle O1NP, 

(O1N)
 2
 = (O1P)

 2 
+ (PN)

 2 
- 2×O1P×PN.cosO1PN 

= r
2 
+ R

2
sin

2
ϕ - 2r.Rsinϕ.cos (90°+ ϕ)      ….(since PN = O2Psin ϕ = Rsin ϕ) 



= 𝑟2  1 +
𝑅2𝑠𝑖𝑛 2∅

𝑟2
+

2𝑅𝑠𝑖𝑛 2∅

𝑟
 = 𝑟2  1 +

𝑅

𝑟
 
𝑅

𝑟
+ 2 𝑠𝑖𝑛2∅  

Therefore, limiting radius of the pinion addendum circle, 

𝑂1𝑁 = 𝑟 1 +
𝑅

𝑟
 
𝑅

𝑟
+ 2 𝑠𝑖𝑛2∅ =

𝑚𝑡

2
 1 +

𝑇

𝑡
 
𝑇

𝑡
+ 2 𝑠𝑖𝑛2∅ 

Let  Am.m = Addendum of the pinion, where Am is a fraction by which the standard addendum of 

one module for the pinion should be multiplied in order to avoid interference. 

We know that the addendum of the pinion = O1N – O1P 

          Therefore,  

                                               𝐴𝑚𝑚 =
𝑚𝑡

2
 1 +

𝑇

𝑡
 
𝑇

𝑡
+ 2 𝑠𝑖𝑛2∅ −

𝑚𝑡

2
   (since O1P = r = 

𝑚𝑡

2
 ) 

 

=
𝑚𝑡

2
  1 +

𝑇

𝑡
 
𝑇

𝑡
+ 2 𝑠𝑖𝑛2∅ − 1  

 

                                                                   𝐴𝑚 =
𝑡

2
  1 +

𝑇

𝑡
 
𝑇

𝑡
+ 2 𝑠𝑖𝑛2∅ − 1  

 

 

Therefore,  

𝑡 =
2𝐴𝑚

 1 + 𝑇
𝑡  

𝑇
𝑡 + 2 𝑠𝑖𝑛2∅− 1

 

 

𝑡 =
2𝐴𝑚

 1 + 𝐺 𝐺 + 2 𝑠𝑖𝑛2∅− 1

 

 

This equation gives the minimum number of teeth required on the pinion in order to avoid     

interference. 
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Torque = 500 Nm 
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10 
[a] 1. Radial or disc cam: In radial cams, the follower reciprocates or oscillates in a direction 

perpendicular to the cam axis. The cams as shown in Fig. (a) to (f) are all radial cams. 

 

 
 

 
 
 
 
 
 
 
 
 
 



 

2. Cylindrical cam: In cylindrical cams, the follower reciprocates or oscillates in a direction parallel to 
the cam axis. The follower rides in a groove at its cylindrical surface.  
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[b] 

When the flanks of the cam connecting the base circle and nose are of convex circular arcs, then the cam 
is known as circular arc cam. A symmetrical circular arc cam operating a flat-faced follower, in which O 
and Q are the centres of cam and nose respectively. EF and GH are two circular flanks whose centres lie at 
P and P′ respectively. The centres  P and P′ lie on lines EO and GO produced. 
Let r1 = Minimum radius of the cam or radius of the base circle = OE, 
r2 = Radius of nose, 
R = Radius of circular flank = PE, 
2α = Total angle of action of cam = angle EOG, 
α = Semi-angle of action of cam or angle of ascent = angle EOK, and 
φ = Angle of action of cam on the circular flank. 
Circular arc cam with flat face of the follower having contact with the circular flank. 
We shall consider the following two cases : 
1. When the flat face of the follower has contact on the circular flank, and 
2. When the flat face of the follower has contact on the nose. 
In deriving the expressions for displacement, velocity and acceleration of the follower for the above two 
cases, it is assumed that the cam is fixed and the follower rotates in the opposite sense to that of the cam. 
In Fig. 10b, the cam is rotating in the clockwise direction and the follower rotates in the counter-clockwise 
direction. 



 
Fig. 10b 

When the flat face of the follower has contact on the circular flank. First of all, let us consider that the 

flat face of the follower has contact at E (i.e. at the junction of the circular flank and base circle). When the 

cam turns through an angle θ (less than φ ) relative to the follower, the contact of the flat face of the 

follower will shift from E to C on the circular flank, such that flat face of the follower is perpendicular to 

PC. Since OB is perpendicular to BC, therefore OB is parallel to PC. From O, draw OD perpendicular to PC. 

From the geometry of the figure, the displacement or lift of the follower (x) at any instant for contact on 

the circular flank, is given by 

 



 

 


