

Partial Differential Equations for Geometric Design

Hassan Ugail

Partial Differential
Equations
for Geometric Design

Hassan Ugail
University of Bradford
Bradford
UK
H.Ugail@Bradford.ac.uk

ISBN 978-0-85729-783-9 e-ISBN 978-0-85729-784-6
DOI 10.1007/978-0-85729-784-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011936005

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:H.Ugail@Bradford.ac.uk
http://www.springer.com
http://www.springer.com/mycopy

Preface

This book is based on the results of over 14 years of research into the topic of partial
differential equations applied to problems relating to geometric design. The book is
intended as an introduction to the topic. It will equally serve as a reference for the
mathematical fundamentals and modern applications using partial differential equa-
tions as a tool for geometric design. The book starts off with a gentle introduction to
the relevant mathematical concepts for geometric design and then introduces partial
differential equations to the reader.

The bulk of the book relates to the use of a class of partial differential equations
known as elliptic partial differential equations which are used for surface generation,
manipulation as well as design for function. Throughout the book, in order to en-
hance the understanding of the reader, practical examples with relevant illustrations
as well explanations are used extensively. Moreover, for the purpose of enabling the
reader to gain practical experience some examples of computer code is supplied.

The author gratefully acknowledges his appreciation and gratitude to various col-
leagues who have collaborated with him on the research relevant to this book. He
also gratefully acknowledges the research funding he has received over the years
from various UK research funding agencies, especially from the UK Engineering
and Physical Sciences Research Council (EPSRC). The author also acknowledges
the help and support he has received by many of his research assistants and research
students who have been involved in research relating to the topic of this book and
consequently contributed to this book both directly and indirectly.

Hassan UgailIlkley, UK

v

Contents

1 Elementary Mathematics for Geometric Design 1
1.1 Vector Algebra . 1
1.2 Lines and Planes in R3 . 3
1.3 Matrix Algebra and Solving Linear Systems 3

1.3.1 Properties of Matrices . 4
1.3.2 Solving Systems of Linear Equations 5

1.4 Properties of Surfaces . 5
1.4.1 Parametric Surface Representation 6

1.5 Summary . 7
References . 7

2 Introduction to Geometric Design . 9
2.1 Introduction . 9
2.2 Mathematical Methods for Shape Representation in Geometric

Design . 10
2.2.1 Schemes for Geometry Model Representation 12

2.3 Enhancing Geometric Design Using Interactive and Parametric
Design . 13
2.3.1 Techniques for Interactive Design 14
2.3.2 Parametric Design . 15

2.4 Use of Optimization Techniques in Geometric Design 16
2.5 Summary . 18

References . 18

3 Introduction to Partial Differential Equations 21
3.1 Definition of a PDE . 21

3.1.1 Examples of PDEs . 22
3.2 Classification of PDEs . 23

3.2.1 Order . 23
3.2.2 Homogeneity . 24
3.2.3 Linearity . 24
3.2.4 Use of a Discriminant as a Classification Method 25

vii

viii Contents

3.3 Harmonic, Biharmonic and the Triharmonic Equation 26
3.3.1 The Biharmonic Equation 27
3.3.2 The Triharmonic Equation 27

3.4 Solution Methods . 27
3.4.1 Analytic Methods . 28
3.4.2 Spectral Methods . 29
3.4.3 Numerical Methods . 29

3.5 Conclusions . 30
References . 30

4 Elliptic PDEs for Geometric Design 31
4.1 Introduction . 31
4.2 The Laplace Equation . 31

4.2.1 Numerical Solution Using Finite Difference Method 33
4.3 The Biharmonic Equation . 33

4.3.1 Analytic Solution . 34
4.3.2 Geometric Properties of the Biharmonic PDE 36

4.4 General Elliptic PDEs . 37
4.4.1 Analytic Solution . 38

4.5 Other Variations of the General Elliptic Equation 41
4.6 Examples . 42
4.7 Conclusions . 45

References . 45

5 Interactive Design . 47
5.1 The Approach to Interactive Surface Design 47
5.2 Trimming PDE Geometry . 51

5.2.1 Manipulating Blend Geometry 56
5.3 Spine of PDE Geometry . 57
5.4 Conclusions . 59

References . 60

6 Parametric Design . 61
6.1 Design Parameters via the Boundary Curves 61
6.2 Local Parameters on the Boundary Curves 63
6.3 The Effect of the Smoothing Parameter a 65
6.4 The Effect of v Parametrization 66

6.4.1 Time-Dependent Parametrization 67
6.5 Summary . 67

References . 68

7 Functional Design . 71
7.1 Introduction . 71
7.2 Principles of Shape Optimization 71
7.3 Simulated Annealing . 73
7.4 Application of Simulated Annealing to Continuous Optimization

Problems . 75

Contents ix

7.4.1 Simulated Annealing Algorithm 75
7.4.2 Constraints . 76

7.5 Further Examples . 76
7.5.1 Design Optimization of a Thin-Walled Structure 79
7.5.2 Prediction of Stable Structures of Vesicles Occurring in

Biological Organisms . 82
7.6 Conclusions . 84

References . 85

8 Other Applications . 87
8.1 Use of PDEs for Generating Time Dependent Geometry and

Animation . 87
8.1.1 Modeling the Time Dependent Geometry of a Human Heart 88
8.1.2 Facial Animation . 89
8.1.3 Cyclic Animation . 91

8.2 Use of PDEs for Data Representation and Compression 94
8.3 Biharmonic Bézier Surfaces . 96
8.4 Conclusions . 98

References . 98

9 Conclusions . 101

Appendix Maple Code to Generate a Surface Patch for the Biharmonic
Equation . 103

Index . 105

Chapter 1
Elementary Mathematics for Geometric Design

Abstract This chapter deals with some of the basic mathematical concepts that are
required to fully understand the material discussed in the rest of this book. Particu-
lary, this chapter presents, in a concise form, the basic concepts of vector algebra,
matrices, systems of linear equations and mathematical properties of surfaces.

1.1 Vector Algebra

A point in space is usually defined by providing its location relative to three mutually
perpendicular coordinate axes passing through an origin O . This is represented as
x, y, z axes as shown in Fig. 1.1. A point P is said to have rectangular coordinates
(x, y, z) if

• x is its signed distance from the yz plane,
• y is its signed distance from the xz plane,
• z is its signed distance from the xy plane.

We define the three dimensional space R3 to be the set of all triples (x, y, z) of real
numbers. These elements of R3 are called vectors. Thus, the point P(x, y, z) defines
the vector v = (x, y, z) in R3. The vector v can also be denoted as

v =
[

x

y

x

]
.

Given two vectors a = (a1,a2,a3) and b = (b1,b2,b3), their sum vector is defined
as

a + b = (a1 + b1, a2 + b2, a3 + b3).

The displacement vector v with a starting point (a1, a2, a3) and final point
(b1, b2, b2) is defined as

v = (a1 − b1, a2 − b2, a3 − b3).

If c is a real number, then the scalar product of a with c is the vector

ca = (ca1, ca2, ca3).

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_1, © Springer-Verlag London Limited 2011

1

http://dx.doi.org/10.1007/978-0-85729-784-6_1

2 1 Elementary Mathematics for Geometric Design

Fig. 1.1 Representation of
vector v in R3

The length |a| of a is defined to be

|a| =
√

(a1)2 + (a2)2 + (a3)2.

Consider any three vectors u = (u1, u2, v2), v = (v1, v2, v3) and w = (w1,w2,w3)

in R3. u, v and w are said to be linearly dependent if and only if there exist scalars
p, q and r such that

pu + qv + rw = 0.

Similarly, u, v and w are said to be linearly independent if and only if the relation
pu + qv + rw = 0 implies that p = q = r = 0.

Given u and v, the dot product u.v is defined to be

u.v = u1v1 + u2v2 + u3v3.

If the two vectors u and v happen to be perpendicular to each other then

u.v = 0.

Given θ is the angle between u and v, we can also define

u.v = |u||v| cos θ.

If the two vectors u and v are linearly independent then the cross-product vector
w = u × v is defined as

u.w = u1w1 + u2w2 + u3w3,

v.w = v1w1 + v2w2 + v3w3.

More specifically, w is given as

w = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Note that w is orthogonal to u and v.
If u and v are parallel to each other then u × v = 0.
Moreover, given u �= 0 and v �= 0,

‖u × v‖ = ‖u‖‖v‖ sin θ,

where 0 ≤ θ ≤ π is the angle between u and v.

1.2 Lines and Planes in R3 3

1.2 Lines and Planes in R3

In R3, a straight line is defined by any two points. Alternatively one could define
a straight line by a point p1 and a vector v which defines the direction of the line.
Thus, any point p on the line can then be defined as,

p = p1 + sv,

where s is a scalar.
Any point (x, y, z) on the line passing through the point p1 = (p1,p2,p2) and

parallel to the non-zero vector v = (v1, v2, v3) has the parametric equations of the
form

x = p1 + v1s,

y = p2 + v2s,

z = p3 + v3s.

A plane Υ in R3 can be defined by a point p1 through which Υ passes, whereby
there exist a line through p1 which is orthogonal to Υ . Another way of defining a
plane is by means of a point p1 on Υ and a vector n which is orthogonal to the
plane Υ . Thus, given that p1 = (x1, y1, z1) and n = (n1, n2, n3), any point p =
(x, y, z) on the plane can be written as

n1x + n2y + n3z = c,

where c = n1x1 + n2x2 + n3x3.
One can also note that given any non-collinear three points we can determine a

unique plane passing through them. In order to compute such a plane, one can first
compute the displacement vector u and v between any two of the points. Then the
normal vector n can be determined as n = u × v. Now, we can use the third point
given and the normal vector n to obtain the equation of the plane.

1.3 Matrix Algebra and Solving Linear Systems

An m × n matrix (m rows, n columns) is represented as

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎤
⎥⎥⎦ .

This can be written as A = [aij], where the entry in the ith row and j th column
is aij .

4 1 Elementary Mathematics for Geometric Design

1.3.1 Properties of Matrices

Transpose The matrix AT = [aji] formed by interchanging the rows and columns
of A is called the transpose of A.

Trace For an n × n matrix (which is also known as a square matrix A), the sum
of the leading diagonal elements (a11, a22, . . . , ann) is

∑n
k=1 akk . This sum is called

the trace of A.

Addition For two matrices of the same size, their sum is defined by adding (or
subtracting) the corresponding entries, that is, if B = [bij] and C = [cij], then

B + C = [bij + cij].

Multiplication To multiply a matrix A by a number c (a scalar), we can multiply
each entry of A by c, that is,

cA = [caij].
Given A is an m × n matrix and B is an n × p matrix, the product AB is the m × p

matrix whose (i, j)th entry is given by

n∑
k=1

aikbkj .

Note that an n × n matrix A with all its main diagonal entries equal to 1 and all
other entries equal to 0 is called the identity matrix I , and for this matrix we have
AI = IA = A.

Inverse Given a square matrix A, its inverse A−1 is defined if A−1 satisfies
AA−1 = A−1A = I .

Determinant Given a 2 × 2 matrix C, the determinant detC = |cij | is defined to
be detC = ad − bc, where the entries of C are

C =
[

a b

c d

]
.

In general, if A is n × m then along row i,

detA = ai1ci1(A) + ai2ci2(A) + · · · + aincin(A),

and along column j ,

detA = a1j c1j (A) + a2jC2j (A) + · · · + anj cnj (A).

1.4 Properties of Surfaces 5

1.3.2 Solving Systems of Linear Equations

Systems of linear equations often arise in geometric design applications. A general
system of linear equations can be written as

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

...
. . .

...
...

am1z1 + am2x2 + · · · + amnxn = bm.

One can write the above system in matrix form as⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

. . .

am1 am2 · · · amn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎦ .

The above can be further represented in augmented matrix form as⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦ .

There are several ways one can solve the above system [1, 5]. A popular approach
to solve such a system is by performing a sequence of elementary row operations on
the augmented matrix. In particular, the following row operations can be performed:

• Interchange of two rows
• Multiplication of one row by a non-zero number
• Adding a multiple of one row to a different row

Gaussian elimination is a technique that can be efficiently implemented to solve a
given system of linear equations [3].

1.4 Properties of Surfaces

There are several ways a surface in R3 can be represented. One way to represent a
surface is using the equation of the form

f (x, y, z) = 0.

This is known as an implicit surface representation. For example, if f (x, y, z) = 0
is of the form ax + by + cz = d then we obtain the equation of a plane. Similarly,
if f is of the form x2 + y2 + z2 = r2 then we obtain the representation of a sphere.
Many surfaces can be represented in this form. However, for complex surfaces such
as those occurring in the real world, implicit surface representation has limitations.
An alternative and more popular way to represent surfaces is to use the parametric
form.

6 1 Elementary Mathematics for Geometric Design

1.4.1 Parametric Surface Representation

A parametric surface is a surface in the Euclidean space R3 which is defined by a
parametric equation with two parameters. Parametric representation is the most gen-
eral way to specify a surface. The simplest type of parametric surfaces are defined
by graphs of functions of two variables. For example,

z = f (x, y), g(x, y) = (x, y, z).

In general, if we take the real parameters u and v, then the surface can be defined by
the vector-valued function, r = r(u, v), where r(u, v) = (r1(u, v), r2(u, v), r3(u, v))

and u1 ≤ u ≤ u2, v1 ≤ v ≤ v2.
Parametric surface representation enables generating all types of surfaces and

facilitates efficient mathematical analysis of surface properties [2, 4, 6].

1.4.1.1 Properties of Parametric Surfaces

Given a parametric surface of the form r(u, v) = (r1(u, v), r2(u, v), r3(u, v)), one
can define the coordinate vectors for the surface

ru = ∂r

∂u
, rv = ∂r

∂v
.

Tangent Plane Given u and v are defined as above and if u and v are parameter-
ized by t , then r(t) is a curve on the surface with a velocity vector,

r′(t) = ruu
′ + rvv

′.

Now if one considers a point p on the line, the vector r′(t) is simply the linear sum
of the vectors ru and rv , which lies on the plane determined by these vectors. This
plane is known as the tangent plane.

Unit Normal The unit normal n at any point on a parametric surface is obtained
as

n = ru × rv

|ru × rv| .

Surface Area The surface area A of a parametric surface can be calculated by
integrating the length of the normal vector ru × rv to the surface over an appropriate
region R in the (u, v) parametric plane, i.e.

A(R) =
∫ ∫

R

|ru × rv|dudv.

1.5 Summary 7

The First Fundamental Form Given a parametric surface r(u, v), if we define
the quantities E = ru.ru, F = ru.rv and G = rv.rv then the first fundamental form I

of the surface is the quadratic expression defined as,

I = E du2 + 2F dudv + Gdv2.

Note that the surface area can also be expressed in terms of the coefficients of the
first fundamental form as

A(R) =
∫ ∫

R

√
EG − F 2 dudv.

The Second Fundamental Form Given a parametric surface r(u, v) and its nor-
mal vector n, if we define the quantities L = ruu.n, M = ruv.n and N = rvv.n then
the second fundamental form II of the surface is the quadratic expression defined as

II = Ldu2 + 2M dudv + N dv2.

Gaussian and Mean Curvature The Gaussian curvature K and mean curvature
H of the surface can be computed using the coefficients of the first and second
fundamental forms of the surface, i.e.

K = LN − M2

EG − F 2
,

H = EN − 2FM + GL

2(EG − F 2)
.

1.5 Summary

In this chapter, we have introduced to the reader the basic mathematical concepts
for geometric design. Thus, understanding of vector algebra, matrices, systems of
linear equations, and particularly mathematical properties of surfaces are essential
for understanding and implementing the concepts of geometric design.

References

1. Anton H (2000) Elementary linear algebra. Wiley, New York
2. Hsiung CC (1981) A first course in differential geometry. Wiley, New York
3. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cam-

bridge University Press, Cambridge
4. Pressley A (2003) Elementary differential geometry. Springer, Berlin
5. Sterling MJ (2009) Linear algebra for dummies. Wiley, New York
6. Struik D (1961) Lectures on classical differential geometry. Addison-Wesley, Reading

Chapter 2
Introduction to Geometric Design

Abstract This chapter provides an introduction to geometric design. It introduces
various popular mathematical methods used for shape representation in geomet-
ric design. It also discusses the role of interactive design and parametric design to
enhance the processes involved in a geometric design problem. Furthermore, this
chapter discusses the use of design optimization to carry out automatic design for
function.

2.1 Introduction

Geometric design concerns with the mathematical description and analysis of shape.
Geometric design draws upon the fields such as algebra, geometry, numerical anal-
ysis and computer programming. Let us consider the process involved in the design
of a new engineering product. Often such a process starts with a definition of a tem-
plate shape where the requirements in terms of the product’s geometric shape and
its functionality are specified. This process then proceeds through a sequence of it-
erative activities to seek an optimal design. Today, this process of ‘automatic design
for function’ relies on the increased use of computers. Although geometric design
based on the extensive use of computers does not automatically provide the solu-
tion to a given design problem, it can increase the efficiency of the design process.
Thus, the main processes of geometric design involve the efficient description of the
geometric shape and the integration of the shape with functional analysis. For this
purpose, for geometric design, a mathematical method which can generate complex
geometries and can relate to the functionality of the object at an early stage of the
design process is desirable.

Over the past 40 years, the use of geometric design methods has grown explo-
sively. Today, virtually all computer-based design tasks commence with the use of
Computer Aided Design (CAD) systems to create detailed geometric models. These
models serve as the point of departure for diverse analysis tools, such as compu-
tational fluid dynamics (CFD), stress analysis, geophysical data exploration, and
computational electromagnetics or acoustics. Due to the increase in the power of
computer hardware, industries such as those related to aerospace, automotive and
electronics make more and more integrated use of CAD and analysis. This provides
a ‘virtual laboratory’ for assessing performance characteristics (such as structural

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_2, © Springer-Verlag London Limited 2011

9

http://dx.doi.org/10.1007/978-0-85729-784-6_2

10 2 Introduction to Geometric Design

strength or aerodynamic drag) that otherwise would require expensive and time-
consuming physical experimentation.

As mentioned above as part of the process of geometric design, the functional
properties of the object being created are analyzed by solving the field equations
governing the physical process(es) under consideration. One major difficulty en-
countered here is the linking of complicated surface geometry to analysis [1, 2].

With the assimilation of CAD systems and analysis tools in the major industrial
processes, an integrated approach is certainly desirable. However, the need for a
systematic way of considering the relationship between geometry and the functional
aspects of the geometric model becomes paramount [3].

A mathematical method which can generate complex geometries and can relate
to the functionality of the object at an early stage of the design process is desir-
able. Furthermore, it will be an added advantage if such a method can create a
parameterized representation of the object as the variation of the parameters that
will then enable the creation of alternative descriptions of the geometry in question
while maintaining the functional relations. Such alternative models are necessary
for design optimization where the best available design candidate is chosen out of a
possible range of designs.

2.2 Mathematical Methods for Shape Representation in
Geometric Design

In geometric design, it is common practice to represent geometry of complex shapes
in terms of polynomial functions of two parameters. The nature of the surface ob-
tained using such polynomial-based methods usually depends on the type of poly-
nomial chosen. Examples of such surfaces are Bézier surfaces [4], B-splines [5],
rational B-splines [6] and non-uniform rational B-splines (NURBS) [7, 8].

A typical bicubic patch in its parametric form can be described as

p(u, v) =
3∑

i=0

3∑
j=0

aij u
ivj , u, v ∈ [0,1], (2.1)

where p is a vector of the Cartesian coordinates of points on the surface, u and v are
parametric coordinates, and the aij are vector coefficients that determine the shape
of the surface patch.

The bicubic patch was first introduced in 1963 by Ferguson [9], where the co-
efficients aij in Eq. (2.1) can be expressed in terms of the vectors p, pu, pv and
puv at the four corner points of the surface patch. The terms pu and pv are taken to
be tangents to the surface in each parametric direction and puv is termed the twist
vector. The effect of the twist vectors is not intuitively obvious and in his original
work Ferguson set them to zero. Ferguson patches are thus expressed in terms of
positional and derivative information at the patch corners and can be considered
to be obtained from Hermite polynomial interpolation between the corner points.
A Ferguson patch can be interpreted as a specific form of the more general Coons

2.2 Mathematical Methods for Shape Representation in Geometric Design 11

patch [10]. The main difference between a Coons patch and a Ferguson patch is that
the former is obtained by interpolation between the boundaries of arbitrary form
while the latter can be obtained by using parametric cubic boundary curves.

Another common type of surface patch is the so-called Bézier patch,

p(u, v) =
m∑

i=0

n∑
j=0

pijBi,m(u)Bj,n(v), u, v ∈ [0,1], (2.2)

where the pij are the Cartesian coordinates of the vertices or the ‘control points’
which form a characteristic polyhedron with an (m + 1)× (n + 1) rectangular array
of points. The Bi,m(u) and Bj,n(v) are known as Bernstein basis functions and are
defined by

Bi,m(u) = m!
i!(m − i)!u

i(1 − u)m−i , (2.3)

and similarly for Bj,n(v). A Bézier surface approximates the characteristic poly-
hedron, and interactive surface design is achieved by moving the control points.
The bicubic Bézier patch, for which m,n = 3, is essentially a reformulation of the
Ferguson patch [9].

An alternative to the Bézier patch is the B-spline surface, which is also defined in
terms of the characteristic polyhedron [11]. B-spline surface patches permit the use
of more control points in the characteristic polyhedron whilst retaining low order ba-
sis functions. They are obtained by replacing the Bernstein basis functions Bi,m(u)

and Bj,n(v) in Eq. (2.2) by the B-spline basis functions Ni,k(u) and Nj,l(v). The
B-spline basis functions are defined recursively by the following formulae:

Ni,1(u) =
{

1 if ti ≤ u,v ≤ ti+1,

0 otherwise,
(2.4)

Ni,k(u) = (u − ti)

(ti+k−1 + ti)
Ni,k−1(u) + (ti+k − u)

(ti+k − ti+1)
Ni+1,k−1(u), (2.5)

and similarly Nj,l(v). The parameters k and l control the degrees (k −1) and (l −1)

of the resulting polynomials in u and v, and thus also control the continuity of
these curves. The ti and tj are called knot values and they relate the parametric
variables u and v to the pij control points. The functions Ni,1(u) and Nj,1(v) switch
between the values 1 and 0 depending on the values of u and v. These B-spline
basis functions are non-zero only over a given finite interval and enable the effect
of a control point on the surface shape to be localized. Another advantage of the
B-spline formulation is its ability to preserve arbitrarily high degrees of continuity
over the complex surface patch. These characteristics make the B-spline surfaces
popular for use in an interactive modeling environment.

The B-spline formulation was extended to non-uniform rational B-splines
(NURBS) by Versprille [12]. The term rational refers to the ratio of the polyno-
mials that characterizes this approach, i.e. a NURBS surface is the ratio of the two
B-spline functions [13, 14].

12 2 Introduction to Geometric Design

A NURBS surface is defined as

S(u, v) =
∑m

i=0
∑n

j=0 p
i,j

wi,jBi,k(u)Bj,l(v)∑m
i=0

∑n
j=0 wi,jBi,k(u)Bj,l(v)

. (2.6)

The surface has (m + 1) × (n + 1) control points p
i,j

and weights wi,j . Assuming

the degrees of basis functions along u and v axes to be k − 1 and l − 1 respectively,
the number of knots is (m+k +1)× (m+ l +1). The non-decreasing knot sequence
is t0 ≤ t1 ≤ · · · ≤ tm+k along the u direction and s0 ≤ s1 ≤ · · · ≤ sn+l along the v

direction with the parameter domain in the range: tk−1 ≤ u ≤ tm+1 and sl−1 ≤ v ≤
sn+1. If the knots have multiplicity k and l in the u and v directions, respectively,
the surface patch will interpolate the four corners of the boundary control points.

Like the rational B-splines NURBS are infinitely smooth in the interior of the
knot span provided the denominator is not zero; and at a given knot NURBS are at
least Ck−1−r continuous with knot multiplicity r , which enable them to satisfy dif-
ferent smoothness requirements. NURBS also share properties such as the ‘convex
hull’ property, ‘local support’ and invariance under standard geometric transforma-
tions [14]. Additionally, the weights wi,j act as extra degrees of freedom influencing
the local shape, i.e. if a particular weight is set to zero, then the corresponding ra-
tional basis function is also zero, and its control point does not effect the NURBS
shape. The spline is attracted towards a control point more if the corresponding
weight is increased and less if the weight is decreased. Moreover, NURBS also
form a common mathematical framework for both implicit and parametric forms,
i.e. in principle they can represent analytic functions such as conics and quadratics
as well as free-form shapes.

The spline based definition for curves and surfaces forms the basis for many of
today’s geometric design systems. However, to create a given object, the chosen
geometric design system may use a variety of analytic descriptions for curves and
surfaces, or the system may use a combination of analytic forms and spline based
functions to perform operations, such as union, difference and intersection [15].
Furthermore, some geometric design systems use variational modeling schemes in
which the basic spline functions are manipulated using physically based relations,
such as force and energy [16].

2.2.1 Schemes for Geometry Model Representation

Various geometry representation techniques have been developed to represent two-
dimensional or three-dimensional geometric shapes. Popular representation tech-
niques include: Boundary Representation (B-Rep), Constructive Solid Geometry
(CSG), feature based representations and variational geometry.

B-Rep Approach In a B-Rep approach, a shape is represented by the boundary
information such as faces, edges and vertices, i.e. B-Rep represents geometry in
terms of boundaries and topological relations.

2.3 Enhancing Geometric Design Using Interactive and Parametric Design 13

CSG Approach The CSG approach models geometric shapes using a set of ‘prim-
itives’ such as cubes, cylinders or prisms. Complex shapes are built from the prim-
itives through a set of Boolean operations (e.g. union, difference and intersection).
Most CSG systems in use today offer quite a variety of primitive solids, ranging
from various types of spheres and ellipses, boxes and cones, and solids defined by
swept or extruded curves. The CSG modeling approach has several inherent limi-
tations of which the most notable limitation is the non-uniqueness of a CSG repre-
sentation. This non-uniqueness of representations makes recognition of shapes from
their CSG representation extremely difficult.

Feature Based Approach In the feature based representation, a part is built from a
set of feature ‘primitives’. Examples of features include holes, slots and ribs. A fea-
ture based design approach allows a user to use features stored in a feature library.
It provides a means for building a complete CAD database with the features right
from the start of the design. However, this approach suffers from the difficulty of
there being a limited number of available feature primitives. It is difficult to satisfy
various design needs, and in the event that the features interact with one another,
new features may arise that can cause complication with the analysis process. Fea-
ture based design allows a designer to bridge the gap between units of the designer’s
perception of forms and data in geometric models. In this scheme of representation,
shapes are described in the way the designer understands them [17].

Variational Approach The concept of using variational geometry in geometric
design started as early as 1981. Instead of defining a geometric model with respect
to a set of characteristic points in R3, dimensions are treated as constraints limiting
the permissible locations of these points. Many schemes for variational design have
been suggested, e.g. [18–21].

Many of these schemes use a physical analogy in which a chosen functional is
used to minimize the elastic energy satisfying certain interpolation constraints im-
posed on the mechanism by which the surface is created. The method of Partial
Differential Equations [22–24] which is discussed in this book falls into this cate-
gory.

It is important to note that the modeling scheme we choose forms an integral
part of the geometric design process. To be useful within a given application area,
the range of shapes that can be represented by a given scheme should be adequate.
Moreover, the scheme should be user friendly, i.e. the model representation scheme
should be well suited for ‘interactive design’.

2.3 Enhancing Geometric Design Using Interactive and
Parametric Design

In the early days of geometric design, design applications were carried out in
‘batch’, i.e. a complete task (or job) was first defined by the user and then sub-
mitted to the computer. The computer processed the complete job without further
interaction from the user and then produced an output.

14 2 Introduction to Geometric Design

Most of the existing geometric design systems, if not all, make heavy use of inter-
active graphics techniques rather than batch techniques. Thus, the user can interact
with the computer via input devices such as the mouse and keyboard.

2.3.1 Techniques for Interactive Design

As discussed above, in geometric design, it is common practice to describe the ge-
ometric models by means of spline based methods. There exist many techniques
for interactive design using such methods. Perhaps the most basic case is the use of
Bézier patches in which the displacement of a control point results in the change in
the shape. This technique has also been applied to B-splines to control the shape of
the surface patch locally. Applying the above technique to an isolated control point
frequently leads to results with an unpredictable effect on the resulting shape of
the surface. Designers usually face the questions of choosing which control points
to move in which direction [25]. In principle, it is possible to produce large-scale
changes to the shape of the surface by moving more than one control point. How-
ever, such interactive manipulations often result in undesired bumps or wiggles
within the surface patch.

As far as interactive design methods using NURBS are concerned, an initial sur-
face is created via specification of a control polygon. The initial shape is then refined
into the final desired shape through interactive adjustments of control points and
weights and possibly addition and deletion of knots. The knot insertion algorithm
[26], the control point insertion algorithm [27] are all complementary elements for
interactive shape refinements. However, such refinement processes are often consid-
ered to be tedious and very unpredictable [28]. For example, to adjust the shape of
a surface should a designer move a control point, or change a weight?

Despite the recent advent of sophisticated devices for 3D interaction, the above
mentioned techniques for interactive surface design and manipulation can be diffi-
cult for a designer to use effectively. To overcome this problem, techniques which
allow ‘physically based’ manipulation have been introduced. Many authors have
suggested the use of ‘constraint based interface’, where some of the design param-
eters have some form of physical relevance.

For example, Terzopoulos and Watkin describe simple interactive sculpting using
viscoelastic and plastic models [29]. Celniker and Gossard [30] describe an interest-
ing prototype system for interactive free-form design based on the finite-element op-
timization of energy functionals. Thingvold and Cohen [31] proposed a deformable
B-spline whose control points are mass points connected by elastic springs and
hinges. Celniker and Welch [30] investigated deformable B-splines with linear con-
straints. Furthermore, for design using NURBS, free-form deformable models were
introduced by Terzopoulos et al. [32]. Such models were further developed by Pent-
land and Williams [33], Platt and Barr [34]. A similar technique for real time design
using deformations is discussed by Borrel and Rappoport [35].

Terzopoulos and Qin, on the other hand, describe a model for interactive de-
sign in which they use a generalized form of NURBS called Dynamic NURBS or

2.3 Enhancing Geometric Design Using Interactive and Parametric Design 15

D-NURBS. The D-NURBS model is governed by dynamic differential equations
which, when integrated numerically through time, continuously evolve the control
points and weights in response to applied forces [36].

Unlike models based on the direct manipulation of surfaces, the behavior of de-
formable models are governed by ‘physical’ laws. The result is that such models
respond to the user interactions in a natural and somewhat predictable way. Many
existing geometric design systems use these techniques. However, as far as surface
manipulations in such systems are concerned, the initial surface is often provided as
a pre-defined geometry model obtained from scan-data, for example, on which only
small scale manipulations are allowed to be carried out.

An important point to note in the existing mathematical models which allow in-
teractive manipulations of surfaces is the large number of design parameters often
involved. In the development of effective mathematical models, for the purpose of
interactive design, much effort has been put into trying to reduce the number of de-
sign parameters associated with the chosen model. Moreover, much effort has been
concentrated towards choosing design parameters with a readily apparent physical
meaning. Thus, the use of ‘parametric design’ has recently been very popular.

2.3.2 Parametric Design

One of the requirements for geometric design systems is the ability to parameterize
the shape of objects. In parametric design, the basic approach is to develop a generic
description of an object or class of objects, in which the shape is controlled by the
values of a set of design variables or parameters. A new design, created for a partic-
ular application, is obtained from this generic template by selecting particular values
for the design parameters so that the item has properties suited to that application.

The design of a wide range of manufactured products conforms to this general
pattern, ranging from engine components to such objects as aircrafts. If a product’s
geometry is composed of standard geometric ‘constructs’ such as circles, ellipses,
cylinders, etc., then the parameterizations of its shape is relatively straightforward.
However, for most products at least some parts of their shape are composed of free-
form surfaces which, although they may constitute a small fraction of the total sur-
face area, can, nevertheless, be very important functionally.

Many geometric design systems can handle the parameterizations of ‘standard’
shapes, though for objects with complicated shapes, commercial systems often fail,
owing to the inability of the geometry modeling package to parameterize such
shapes. Particular problem areas include the generation of surfaces which do not
conform to standard, limited descriptions.

The inherent problem with the mathematical models which are used to describe
the geometry of a given model is the nature of their complexity. This is particu-
larly problematic when design has to be carried out from ‘scratch’ in an interactive
environment. Thus, a mathematical model which can model and parameterize the
geometry in terms of small set of shape parameters and, also, enable a quick inter-
action with the geometry is desirable.

16 2 Introduction to Geometric Design

2.4 Use of Optimization Techniques in Geometric Design

A typical demand in a practical geometric design task may be to minimize or max-
imize an objective function without violating a set of constraints. In order to im-
prove a design by applying methods of computational optimization, it is necessary
to express the design objective and constraints of the optimization problem by an
appropriate mathematical formulation. A general formulation of the optimization
problem can be written as

min
{
f (x)

∣∣ xl ≤ x ≤ xu; g(x) = 0; h(x) ≤ 0
}
, x ∈ �n, (2.7)

with

f the objective function;
x vector of n design variables;
g vector of p equality constraints;
h vector of q inequality constraints;
xl and xu lower and upper bounds for the design variables.

The design variables and the constraints form the feasible design space

x ∈ Rn | xl ≤ x ≤ xu; g(x) = 0; h(x) ≤ 0, (2.8)

which describes the design space.
Coming up with appropriate formulations of the design objective and constraints

of the optimization problem in a geometric design application is not always a triv-
ial task. For example, due to the complex nature of most engineering problems, the
choice of the right objective function requires experience and the fundamental un-
derstanding of the design objectives. Furthermore, not all constraints can be easily
formulated in a mathematically correct way for optimization [37].

There exist a wide variety of methods for numerical optimization. The choice
of a particular method is problem specific and involves considerations such as the
computational cost of evaluating the function to be optimized and also the behavior
of the function within the design space. Generally, these methods can be divided into
two categories, i.e. those that only require the evaluation of the objective function
and those that require the evaluation of the objective function and its derivatives with
respect to the design parameters. During the process of optimization, most of the
computational effort is spent on evaluating the objective function rather than in the
optimization routine itself. Therefore, it is desirable to use a design method which
minimizes the number of design variables and therefore requires as few function
evaluations as possible.

Generally, the optimization process requires a search to be made in the parameter
space in order to find the minimum value of the objective function. (Note that, with-
out loss of generality, we can consider minimization problems, since maximizing a
function f is equivalent to minimizing −f .) Particular algorithms which are used
for minimization in numerical analysis include the downhill simplex algorithm due
to Nelder and Mead [38] and Powell’s direction set algorithm [39].

2.4 Use of Optimization Techniques in Geometric Design 17

Nearly all these gradient-based methods have the common feature that they per-
form a series of local minimizations in which the objective function f is minimized
along a straight line in the parameter space. These methods are iterative and at each
successive iteration they give a vector xk = (x1

k, x2
k, . . . , xk

n) of the n independent
design variables which is computed from the previous iterations using the expres-
sion

xk+1 = xk + αksk. (2.9)

Here sk is a direction of search and αk is a scalar that minimizes the one-dimensional
function F(α) ≡ f (xk + αksk). Thus, given a starting point, the algorithm moves in
a series of steps through points in the parameter space, giving a lower value of the
objective function than previously, until it finds a lowest possible local value of the
objective function. An important point to note regarding this type of methods is that
they find local minima. Thus, if a global minimum is required, multiple searches by
such methods have to be performed with different starting points.

Very often it is the case that the design space considered contains many local min-
ima, and it becomes extremely difficult to search for a global minimum using local
minimization methods. An alternative method, which is considered in this work, is
a global optimization method which uses a stochastic process known as Simulated
Annealing [40, 41]. This method probabilistically searches in every region of the
design space and therefore converges to a global minimum although not necessarily
in a finite time.

As mentioned before, the particular algorithm used for numerical optimization
must take into account the computing time needed to evaluate the objective function.
Each function evaluation must be performed and thus may be very costly in terms
of computing time.

Various approaches have been taken to perform the actual optimization. A typical
approach [42] is to consider the optimization in terms of successive linear program-
ming problems. The constraints and the objective function are linearized about the
current design variable values and this simplified problem is solved. The result is
taken as the new design variable values and the process is repeated until no further
improvements can be made. This method has the advantage of making use of the
efficient linear programming algorithms that are available. Alternatively, the search
algorithm can be based on the design sensitivities to solve the full non-linear prob-
lem, again in an iterative manner. In most design optimization, it is common that
the design variables are effectively taken as the Cartesian coordinates of points that
boundary curves of a particular form were required to pass through. However, a dif-
ferent approach to this was taken by Kristensen and Madsen [44] who described the
boundary as a weighted sum of certain specified functions, the weights being taken
as the design variables.

It should be noted that the most important aspect of shape optimization is the
choice of the design variables to be used and how the boundary shape is parameter-
ized in terms of these design variables. Choosing too many variables will consider-
ably complicate the design problem with severe implications on the computational
time required, and having too few variables may result in only trivial solutions being

18 2 Introduction to Geometric Design

obtained [43, 45]. It is therefore a basic requirement that a wide range of boundary
shapes (which can be defined by a relatively small number of parameters) are acces-
sible to the method of optimization used.

2.5 Summary

In this chapter, we have given an introduction to the geometric design. The discus-
sions have been centered around some of the popular methods for geometry repre-
sentation such as splines. The key points to consider when developing a geometric
design system are the ability to represent a given object in an efficient way, the abil-
ity then to create alterative designs using parametric representation, and the ability
to generate an optimal design by means of careful consideration of alterative designs
in a consistent fashion via the use of numerical optimization techniques.

References

1. Farouki RT (1999) Closing the gap between CAD model and downstream application. SIAM
News 32:5. http://www.siam.org/siamnews/

2. Lee W (1999) Principles of CAD/CAM/CAE systems. Addison-Wesley, Reading
3. Shapiro V, Voelcker H (1989) On the role of geometry in mechanical design. Res Eng Des

1:63–73
4. Bézier P (1986) The mathematical basis of UNISURF CAD system. Butterworths, London
5. Woodward CD (1987) Blends in geometric modelling. In: Martin RR (ed) Mathematical meth-

ods of surfaces II. Oxford University Press, London, pp 255–297
6. Tiller W (1983) Rational B-splines for curve and surface representation. IEEE Comput Graph

Appl 3:61–69. doi:10.1016/0010-4485(87)90234-X
7. Piegl L, Tiller W (1987) Curve and surface constructions using rational B-splines. Comput

Aided Des 19:485–498. doi:10.1016/0010-4485(87)90234-X
8. Schumaker LL (1981) Spline functions: basic theory. Wiley, New York
9. Faux DI, Pratt MJ (1979) Computational geometry for design and manufacture. Ellis Hor-

wood, Chichester
10. Coons SA (1994) Surfaces for computer-aided design of space forms. Project MAC, Report

MAC-TR-41, Massachusetts Institute of Technology
11. Mortenson ME (1985) Geometric modelling. Wiley, New York
12. Vasprille KJ (1975) Computer-aided design applications of the rational B-spline approxima-

tion form. PhD thesis, Syracuse University, Syracuse, New York
13. Piegl L (1991) On NURBS: a survey. IEEE Comput Graph Appl 11(1):55–71.

doi:10.1109/38.67702
14. Farin G (1990) Curves and surfaces for computer-aided design: a practical guide, 2nd edn.

Academic Press, New York
15. Hsu W, Woon YI (1998) Current research in the conceptual design of mechanical products.

Comput Aided Des 30(5):377–389. doi:10.1016/S0010-4485(97)00101-2
16. Nowacki H, Dingyuan L, Xinmin L (1989) Mesh fairing GC surface generation method. In:

Straßer W, Seidel HP (eds) Theory and practise of geometric modelling. Springer, Berlin,
pp 93–103

17. Nakajima N, Gossard D (1982) Basic study in feature descriptor. MIT CAD Technical Report,
Massachusetts Institute of Technology, Cambridge

http://www.siam.org/siamnews/
http://dx.doi.org/10.1016/0010-4485(87)90234-X
http://dx.doi.org/10.1016/0010-4485(87)90234-X
http://dx.doi.org/10.1109/38.67702
http://dx.doi.org/10.1016/S0010-4485(97)00101-2

References 19

18. Nowacki H, Rees D (1983) Design and fairing of ship surfaces. In: Barnhill RE, Boehm W
(eds) Surfaces in CAGD. North-Holland, Amsterdam, pp 121–134

19. Hagen H, Schulze G (1990) Variational principles in curve and surface design. In: Hagen H,
Roller D (eds) Geometric modelling. Springer, Berlin, pp 161–184

20. Kallay M (1993) Constrained optimisation in surface design. In: Falcidieno B, Kunii TC (eds)
Modelling in computer graphics. Springer, Berlin, pp 85–93

21. Brunnett G, Wendt J (1998) Elastic splines with tension control. In: Dæhlen M, Lyche T,
Schumaker LL (eds) Mathematical methods for curves and surfaces II. Vanderbilt University
Press, Nashville, pp 33–40

22. Bloor MIG, Wilson MJ (1989) Generating blend surfaces using partial differential equations.
Comput Aided Des 21(3):33–39. doi:10.1016/0010-4485(89)90071-7

23. Bloor MIG, Wilson MJ (1989) Blend design as a boundary-value problem. In: Straßer W,
Seidel HP (eds) Theory and practise of geometric modelling. Springer, Berlin, pp 221–234

24. Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE
method. ACM Trans Graph 18(2):195–212. doi:10.1145/318009.318078

25. Farin G, Sapidis N (1989) Curvature and the fairness of curves and surfaces. IEEE Comput
Graph Appl 3:25–57. doi:10.1109/38.19051

26. Boehm W (1980) Inserting new knots into B-spline curves. Comput Aided Des 12:199–201.
doi:10.1016/0010-4485(80)90154-2

27. Léon JC (1991) Modélisation des courbes et des surfaces pour la CFAO. Hermés, Paris
28. Rappoport A, Helor Y, Werman M (1994) Interactive design of smooth objects with proba-

bilistic point constraints. ACM Trans Graph 13:156–176. doi:10.1145/176579.176582
29. Terzopoulos D, Witkin A (1988) Physically based models with rigid and deformable compo-

nents. IEEE Comput Graph Appl 8(6):41–51. doi:10.1109/38.20317
30. Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form

shape design. Comput Graph 25(4):257–266. doi:10.1145/122718.122746
31. Thingvold JA, Cohen E (1990) Physical modelling with B-spline surfaces for interactive de-

sign and animation. Comput Graph 24(2):129–137. doi:10.1145/91385.91430
32. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. Comput

Graph 21(4):205–214. doi:10.1145/37401.37427
33. Pentland A, Williams J (1989) Good vibrations: modal dynamics for graphics and animation.

Comput Graph 23(3):215–222. doi:10.1145/74333.74355
34. Platt J, Barr A (1988) Constraints methods for flexible models. Comput Graph 22(4):279–288.

doi:10.1145/54852.378524
35. Borrel P, Rappoport A (1994) Simple constrained deformations for geometric modelling and

interactive design. ACM Trans Graph 13:137–155. doi:10.1145/176579.176581
36. Terzopoulos D, Qin H (1994) Dynamic NURBS with geometric constraints for interactive

sculpting. ACM Trans Graph 13:103–136. doi:10.1145/176579.176580
37. Cohen MZ (1994) Theory and practise of structural optimisation. Struct Multidiscip Optim

7:20–31. doi:10.1007/BF01742500
38. Nelder JA, Mead R (1965) A simplex method for function minimisation. Comput J 7:308–313.

doi:10.1093/comjnl/7.4.308
39. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cam-

bridge University Press, Cambridge
40. Kirkpatrick S, Gellat D Jr, Vecchi MP (1983) Optimisation by simulated annealing. Science

220(4598):671–680. doi:10.1126/science.220.4598.671
41. Vanderbilt D, Louie SG (1984) A Monte Carlo simulated annealing approach to optimisation

over continuous variables. J Comput Phys 56:259–271. doi:10.1023/A:1004680806815
42. Zienkiewicz OCZ, Campbell JS (1973) Shape optimisation and sequential linear program-

ming. In: Gallagher RH, Zienkiewicz OCZ (eds) Optimal structural design. Wiley, London,
pp 109–126

43. Raphael TH, Ramana GV (1986) Structural shape optimization: a survey. Comput Methods
Appl Mech Eng 57(1):91–106. doi:10.1016/0045-7825(86)90072-1

http://dx.doi.org/10.1016/0010-4485(89)90071-7
http://dx.doi.org/10.1145/318009.318078
http://dx.doi.org/10.1109/38.19051
http://dx.doi.org/10.1016/0010-4485(80)90154-2
http://dx.doi.org/10.1145/176579.176582
http://dx.doi.org/10.1109/38.20317
http://dx.doi.org/10.1145/122718.122746
http://dx.doi.org/10.1145/91385.91430
http://dx.doi.org/10.1145/37401.37427
http://dx.doi.org/10.1145/74333.74355
http://dx.doi.org/10.1145/54852.378524
http://dx.doi.org/10.1145/176579.176581
http://dx.doi.org/10.1145/176579.176580
http://dx.doi.org/10.1007/BF01742500
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1023/A:1004680806815
http://dx.doi.org/10.1016/0045-7825(86)90072-1

20 2 Introduction to Geometric Design

44. Kristensen ES, Madsen NF (1976) On the optimal shape of fillets in plates subject to mul-
tiple in-plane loading cases. Int J Numer Methods Eng 10:1007–1019. doi:10.1002/nme.
1620100504

45. Imam MH (1982) Three-dimensional shape optimisation. Int J Numer Methods Eng 18:661–
673. doi:10.1002/nme.1620180504

http://dx.doi.org/10.1002/nme.1620100504
http://dx.doi.org/10.1002/nme.1620100504
http://dx.doi.org/10.1002/nme.1620180504

Chapter 3
Introduction to Partial Differential Equations

Abstract This chapter provides an introduction to partial differential equations
(PDEs) with the aim of introducing the reader with the mathematical concepts that
are used in further chapters. The chapter first introduces the general concept of PDEs
and discusses various types of PDEs. Special emphasis is given to elliptic PDEs
since this type of equations form the basis for the development of geometric design
techniques throughout this book.

3.1 Definition of a PDE

In simple terms, one can describe a PDE as a mathematical tool which can be used
to describe a given physical phenomena. This description is given in the form of a
mathematical relation between different rates of change of the phenomena in ques-
tion with respect to different variables, e.g. the physical coordinates and time. Thus,
many physical problems in the real world can be mathematically described by some
form of a PDE, e.g. physical phenomena such as heat transfer, ripple propagation in
a pond, certain problems in economics and finance.

Mathematically speaking, the rate of change of one quantity with respect to an-
other is known as a derivative, and in particular these rates are known as partial
derivatives when the function that is being differentiated depends on two or more
variables. For instance, assume that a function F depends on x, y and t , that is,
F(x, y, t) where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and t ≥ 0. Thus, the rate of change of
F(x, y, t) with respect to the variable x is denoted by the following notation

∂F

∂x
, (3.1)

and it represents the partial derivative of F with respect to x. If we assume that the
derivative ∂F

∂x
has to be differentiated again, but this time with respect to y then this

is written as

∂2F

∂y∂x
. (3.2)

Now if one assumes that a given physical phenomenon is mathematically modeled
by F and it is governed by a relation establishing that the sum of the partial deriva-
tive of F with respect to x and the second partial derivative of F with respect with

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_3, © Springer-Verlag London Limited 2011

21

http://dx.doi.org/10.1007/978-0-85729-784-6_3

22 3 Introduction to Partial Differential Equations

x and y has to be equal to a given function G(x,y, t), then all this can be efficiently
represented in a PDE such as

∂F

∂x
+ ∂2F

∂y∂x
= G(x,y, t). (3.3)

In other words, PDEs are mathematical relations of partial derivatives of a given
function. As the reader may expect, the task of translating a given phenomenon into
the relevant mathematical language is not necessarily an easy task and may involve
physical experimentation as well as intuition. One should note that Eq. (3.3) has no
known physical meaning and it was simply posed for illustration purposes.

One of the most crucial parts of the study of PDEs lies in identifying their solu-
tions. Sometimes it is not an easy task and hence specialized areas of mathematics
are dedicated to this. Before discussing solution methods for PDEs, it is necessary
to provide some examples of PDEs and how we classify them.

3.1.1 Examples of PDEs

PDEs are used in almost all scientific disciplines, and therefore they are often named
after the phenomenon they describe or the person who related such an equation to
a particular phenomenon and found its solution. Below the reader will find some
examples of PDEs [7, 8, 11, 13].

• Heat equation
The distribution of heat in a region or an object over a period of time can be

described by

∂Q

∂t
= k

(
∂2Q

∂x2
+ ∂2Q

∂y2
+ ∂2Q

∂z2

)
, (3.4)

where Q = Q(x,y, z, t) is a function describing the temperature at any given po-
sition (x, y, z) of the object at a given time t . Here k represents the thermal con-
ductivity of the object or region where heat is being distributed, and it is usually
a constant provided the heat is to be transferred through a homogeneous isotropic
medium. The heat equation is a particular case of the diffusion equation which
can be used to model a number of diffusion problems.

• Wave equation
Light, sound, water and electromagnetic currents are propagated in the form

of waves. The equation, in a three-dimensional form, describing how such waves
are propagated is given by

∂2Ψ

∂x2
+ ∂2Ψ

∂y2
+ ∂2Ψ

∂z2
= 1

ν2

∂2Ψ

∂t2
, (3.5)

where ν represents the velocity at which the wave propagates through space and
Ψ is a function of x, y, z and t .

3.2 Classification of PDEs 23

• Poisson’s equation
This equation is commonly used in electrostatics in order to describe an elec-

trostatic field. It can be also used to describe other physical phenomena in areas
such as theoretical physics and engineering. The general form of Poisson’s equa-
tion is given as

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= f , (3.6)

where φ(x, y, z) denotes the potential field and f (x, y, z) is a given function.
A particular case in which this equation is employed in electrostatics is

f (x, y, z) = 4πρ,

where ρ represents the charge density of the medium. Another particular case of
this equation considers

f (x, y, z) = 0.

This case corresponds to the Laplace equation.
• Black–Scholes equation

This equation is commonly used in mathematical finance to predict the value
of a given stock and is given as

∂f

∂t
+ rS

∂f

∂S
+ σ 2S2 ∂2f

∂S2
= rf, (3.7)

where f = f (S) is a general derivative that is a function of S, the underlying
variable r denotes the risk free rate of return and σ is a constant representing the
volatility.

Other examples include the Navier–Stokes equations used in fluid mechanics,
equilibrium equations that are responsible for describing the stress and strain dis-
tributions in solid mechanics, and the Schrödinger equation which can be used to
describe non-relativistic quantum mechanics.

3.2 Classification of PDEs

There are several criteria which can be employed to classify PDEs. These mainly
depend on the order, the linearity and homogeneity of the PDE. Below, some of the
most standard criteria to classify PDEs are explained below.

3.2.1 Order

The order of a PDE is determined by the highest order of all the partial derivatives
involved in the equation. For instance, the equation given by

∂4h

∂x4
+ ∂h

∂t
= 0 (3.8)

24 3 Introduction to Partial Differential Equations

is a fourth order partial differential equation whereas the equation determined by

∂f

∂x
+ ∂f

∂y
+ ∂f

∂z
= 0 (3.9)

is of the first order. This is perhaps one of the easiest and simplest criteria to identify
and classify a PDE.

3.2.2 Homogeneity

The homogeneity of a partial differential equation depends on the existence of terms
depending on the independent variables, i.e., if there are terms in which the inde-
pendent variables are involved, the equation is said to be non-homogeneous and
homogeneous if such terms do not exist. For example, the equation

∂4h

∂x4
+ ∂h

∂t
+ x = 0 (3.10)

is a non-homogeneous partial differential equation whereas the equation determined
by

∂f

∂x
+ ∂f

∂y
+ ∂f

∂z
= 0 (3.11)

is homogeneous. This criterion is slightly more difficult to identify when compared
to the order of a PDE. However, it is just a matter of writing all the relevant terms
that include the function which is being differentiated on one side and leaving the
rest of the terms on the other side. If there is a non-zero term on the right hand side
of the equation it is described as non-homogeneous.

3.2.3 Linearity

The linearity of a PDE is determined by the order of the derivative function involved
to describe the PDE. In other words, the unknown function and its derivatives must
appear to the power of one at all times and no products among the unknown func-
tion and its derivatives are permitted. Otherwise, the PDE is regarded as non-linear.
Examples of linear and non-linear partial differential equations are listed below. The
equation

h3∂4h

∂x4
+ ∂h

∂t
+ x = 0 (3.12)

is a non-linear partial differential equation whilst

∂f

∂x
+ ∂f

∂y
+ ∂f

∂z
= 0 (3.13)

is linear.

3.2 Classification of PDEs 25

There are other more complicated criteria that can be used to classify PDEs. The
most common is the use of a discriminant to categorize PDEs as elliptic, parabolic
or hyperbolic, depending on the value of the discriminant. Details on how this clas-
sification scheme works are given below.

3.2.4 Use of a Discriminant as a Classification Method

Often in mathematics discriminants are used for determining the nature of the roots
associated with a given second order algebraic equation. Therefore, a discriminant
could easily tell if both roots are real and different, if there is only one root or if
they are complex. Similarly, PDEs can be classified into different types of equations
depending on the value of the discriminant. This classification is rather useful since
it can guide a user to the solution to a particular PDE. Assume that the general
second order partial differential equation in two variables is given by

A
∂2F

∂x2
+ B

∂2F

∂y∂x
+ C

∂2F

∂y2
+ · · · = 0. (3.14)

This equation has been written under the assumption that

∂2F

∂y∂x
= ∂2F

∂x∂y
.

The discriminant through which Eq. (3.14) is classified is thus

B2 − 4AC.

The classification is divided into three major groups, i.e.

• B2 − 4AC < 0
PDEs fulfilling this condition are regarded as elliptic PDEs. An example of

such a PDE is the Laplace equation.
• B2 − 4AC = 0

Any second order PDE satisfying this condition is classified as a parabolic
PDE. The heat equation is an example of a parabolic equation.

• B2 − 4AC > 0
The remaining condition characterizes hyperbolic partial differential equa-

tions. An example of such an equation is given in the form of the wave equation.

This classification of second order PDEs can be further extended to PDEs of higher
order. However, for the sake of brevity, this will not be included here. A description
of each type of partial differential equations is given below so that the reader can
appreciate why this classification has been so useful.

3.2.4.1 Elliptic PDEs

The solution of this type of PDEs is generally given in terms of harmonic func-
tions [1], and are smooth within the domain in which they are solved. Moreover,

26 3 Introduction to Partial Differential Equations

if the coefficients multiplying the terms involving the unknown function and its
derivatives exist then the solution can be found using Fourier transforms.

3.2.4.2 Parabolic PDEs

Parabolic PDEs are typically related to evolution problems such as diffusion of heat
through a medium. For this reason, they are also known as evolution equations since
they describe how a physical property changes through time across a given domain.
Generally, solutions to this type of equations are less stable when compared to el-
liptic PDEs.

3.2.4.3 Hyperbolic PDEs

A traditional example of a hyperbolic PDE is the wave equation and in its simplest
form the solution is given in the form of a traveling wave by

f (x, t) = U(x + ct), (3.15)

where c is the velocity at which the traveling wave propagates.

3.3 Harmonic, Biharmonic and the Triharmonic Equation

Special emphasis is given to the Harmonic, Biharmonic and Triharmonic equations
since they represent the foundations of the surface generation technique that will be
discussed in this book. These equations fall into the category of elliptic PDEs and
are commonly denoted by (∇2)kχ = 0, (3.16)

where ∇2 represents the Laplace operator and k ≥ 1. The form of the Laplace oper-
ator in three-dimensional Cartesian coordinates is

∇2 = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
. (3.17)

The reader may have already noticed that in the particular case when k is equal to 1,
the equation obtained is the Laplace equation mentioned previously. This equation
is called the Harmonic equation since its solution is given by Harmonic functions
which are functions with continuous partial second derivatives satisfying Laplace’s
condition. The Harmonic equation has been extremely useful to describe a number
of physical phenomena, particularly those that can be related to potential fields. For
this reason this type of PDEs are also used to describe laws of conservation. As for
the solution of the PDE, the nature of the boundary conditions required to solve such
an equation leads to two different approaches:

3.4 Solution Methods 27

• Dirichlet boundary conditions
These boundary conditions specify the value of φ on the boundary of the re-

gion in which the PDE is solved.
• Neumann boundary conditions

These boundary conditions specify the value of the normal derivative of the
function φ at the boundary of the domain.

3.3.1 The Biharmonic Equation

The case when k = 2 in Eq. (3.16) is known as the Biharmonic equation. This time,
its solution is given in terms of functions whose fourth partial derivatives are con-
tinuous and satisfy the Biharmonic condition. Examples in which this equation has
played an important role describing physical phenomena are the case of Stokes flow
in fluid dynamics, where the Biharmonic equation is used to find the stream func-
tion describing the flow or in continuum mechanics where it is used to find Airy or
Love stress functions to describe plane stress or plane strain problems relating to a
displacement function.

3.3.2 The Triharmonic Equation

The particular case when k = 3 in Eq. (3.16) is known as the Triharmonic equa-
tion and, as the reader may already suspect, its solution is given in terms of func-
tions whose sixth order partial derivatives are continuous. This type of equation is
mentioned since it has been explored in geometric design as a surface generation
technique providing curvature continuity between two surface patches.

It is worth mentioning that the solution to these three equations are so similar that
sometimes they look as if the solution to the Harmonic equation has been extended
to find the respective solutions of the other two equations. Further details on the
methods for solving this type of PDEs are given below.

3.4 Solution Methods

One should note that the task of finding a solution to a PDE is by no means triv-
ial. Sometimes one can be lucky and find a simple analytic solution to the PDE in
question. However, in the vast majority of cases this is not the case. It is noteworthy
that entire fields of mathematics are devoted to the analysis of PDEs for developing
novel methods for finding solutions to PDEs.

Thus, one can find that there are several analytic techniques capable of providing
an exact solution, some other analytic techniques leading to approximate solutions
and partial or fully numerical techniques for solving very complex problems defined
in terms of PDEs. A list of the most important techniques is given below together
with a brief description explaining the basic theory behind them.

28 3 Introduction to Partial Differential Equations

3.4.1 Analytic Methods

The analytic methods available for finding the solution of a given PDE include the
method of separation of variables and the method of change of variable [3]. These
methods are explain below.

• Separation of variables
The method of separation of variables is perhaps the most common when at-

tempting to find the solution to a given PDE. This method is generally used to
solve linear PDEs and consists of expressing the unknown function in terms of a
product of a series of functions, each of which depends only on one of the inde-
pendent variables. Then this function is substituted in the PDE to be solved. For
instance, consider the Harmonic equation in two dimensions given by

∂2u

∂x2
+ ∂2u

∂x2
= 0. (3.18)

Thus, the method of separation of variables establishes that

u(x, y) = X(x)Y (y).

After working out the necessary algebra, we can write the equation as

X′′

X
= −Y ′′

Y
,

where X′′ and Y ′′ denote the second derivative of X and Y , respectively. Note
that we have now grouped all the terms depending on x on one side and those
depending on y on the other side of the equation. Therefore, the equation has a
solution if and only if each of the sides is equal to the same constant, leading to

X′′ = −k2X and Y ′′ = k2Y.

Thus, the solution to Eq. (3.18) is given by,

u(x, y) = (
A exp(kx) + B exp(−kx)

)+ (
C cos(ky) + D sin(ky)

)
,

where A, B , C and D are constants whose value will depend on the particular
boundary conditions.

• Change of variable
Solutions to some PDEs also can be obtained by performing a suitable change

of variable whereby the original PDE is written in a simple form which is easier to
solve. For instance, with a suitable change of variable the Black–Scholes equation
described earlier can be reduced to the heat equation.

There are some other analytic methods for solving PDEs such as the method of
characteristics and the use of superposition principle. For the sake of brevity, these
methods will not be explained here. In addition to analytic methods, it is also pos-
sible to find the solution through approximation techniques. Some of these methods
are discussed below.

3.4 Solution Methods 29

3.4.2 Spectral Methods

Spectral methods comprise of mathematical techniques used to find a solution to
some types of PDEs. These methods usually express the solution of a given PDE
in terms of its Fourier series which is then substituted in the PDE itself in order to
obtain a system of ordinary differential equations [2, 4]. This technique often sim-
plifies the problem. However, it is often necessary to employ numerical techniques
to find the solution to each of the resulting ordinary differential equations [6].

3.4.3 Numerical Methods

The degree of difficulty presented in solving PDEs (especially those related to gen-
eral physical problems) has led to the constant development of newer, faster and
better numerical techniques as means for finding an approximate solution to any
given PDE. The most common of these techniques are finite difference methods,
finite element methods and boundary element methods [10].

• Finite Difference Method
Finite difference methods are based on grid-type discretization of the unknown

function in the domain in which a given PDE is solved. The derivatives involved
in the PDE are then expressed in terms of these discrete points according to well
established rules at every point in the grid and as many neighboring points as
required by the order of the derivative in turn. It is worth mentioning that the value
of the function and its derivatives are also expressed in the same manner but are
somehow compensated with the boundary conditions. Then, all the corresponding
expressions are substituted in the original PDE, leading to a system of algebraic
equations that can be easily solved.

Finite difference method can be further categorized into explicit, implicit and
semi-implicit methods. The type of method selected to solve a particular PDE
depends on the criteria often related to the inner stability of the method [12].

• Finite Element Method
Finite element method is a technique that can solve either PDE or integral dif-

ferential equations indistinctively. The working principle of this technique con-
sists of approximating the original PDE by a system of ordinary differential equa-
tions that can be integrated numerically using well known methods. The main
challenge when applying this technique to solve the PDE consists in approximat-
ing the original equation so that it is stable. Finite element methods are particu-
larly useful for solving problems with a moving boundary [9].

• Boundary Element Method
This method consists in finding a suitable set of boundary values by means of

re-writing the original PDE as an integral equation. The boundary values found
can then be used to calculate the numerical solution of the original PDE. Finite
element methods are often regarded as accurate. However, they usually lead to
very large matrix systems, and therefore their computational cost can be quite
high [5].

30 3 Introduction to Partial Differential Equations

3.5 Conclusions

This chapter has covered a gentle introduction to partial differential equations
(PDEs). Various methods to classify the PDEs were discussed. Examples of PDEs
that are commonly used in applied mathematics were also described. In particular,
the use of elliptic PDEs was discussed and the Harmonic and Biharmonic equations
were presented. Various solution methods available for solving PDEs, ranging from
analytic to numerical schemes, were also mentioned.

References

1. Axler S, Bourdon P, Ramey W (2001) Harmonic function theory. Springer, Berlin
2. Castro CG, Ugail H, Willis P, Palmer I (2008) A survey of partial differential equations in

geometric design. Vis Comput 24(3):213–225. doi:10.1007/s00371-007-0190-z
3. Evans G, Blackledge J, Yardley P (1999) Analytic methods for partial differential equations.

Springer, Berlin
4. Fornberg B (1996) A practical guide to pseudospectral methods. Cambridge University Press,

Cambridge
5. Gladwell I (1980) Survey of numerical methods for partial differential equations. Oxford Uni-

versity Press, London
6. Gottlieb D, Orzag S (1977) Numerical analysis of spectral methods: theory and applications.

SIAM, Philadelphia
7. Farlow SJ (1999) Partial differential equations for scientists and engineers. Dover, New York
8. Jang CL (2011) Partial differential equations: theory, analysis and applications. Nova Publ.,

New York
9. Johnson C (2009) Numerical solution of partial differential equations by the finite element

method. Dover, New York
10. Machura M, Sweet RA (1980) A survey of software for partial differential equations. ACM

Trans Math Softw 6(4):461–488. doi:10.1145/355921.355922
11. Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge Uni-

versity Press, Cambridge
12. Smith GD (1985) Numerical solution of partial differential equations: finite difference meth-

ods. Clarendon, Oxford
13. Zachmanoglou EC, Thoe DW (1988) Introduction to partial differential equations with appli-

cations. Dover, New York

http://dx.doi.org/10.1007/s00371-007-0190-z
http://dx.doi.org/10.1145/355921.355922

Chapter 4
Elliptic PDEs for Geometric Design

Abstract This chapter deals with the use of elliptic PDEs for geometric design.
The chapter introduces the common elliptic PDEs such as the Laplace equation
and the Biharmonic equation and shows that they can be used as a tool for surface
generation. This chapter also discusses the general elliptic PDEs for surface design.
Solution schemes showing how to solve the chosen elliptic PDEs in analytic form is
described. Several examples of surface generation using elliptic PDEs are also given
in this chapter.

4.1 Introduction

The use of elliptic PDEs for shape design is conceptually different to the conven-
tional methods such as splines. The basic philosophy behind this method is that
shape design is effectively treated as a mathematical boundary-value problem, i.e.
shapes are produced by finding the solutions to a suitably chosen elliptic PDE that
satisfies certain boundary conditions. Bloor and Wilson in their original papers [1, 2]
illustrated how elliptic PDEs (in particular the Biharmonic equation) can be used to
generate a number of smooth blending surfaces. The problem of blend generation is
essentially that of generating a smooth surface which acts as a bridging surface be-
tween the neighboring primary surfaces [13]. Such a blending surface must meet the
primary surface at specified curves, known as the tramlines, with a specified degree
of continuity.

4.2 The Laplace Equation

Taking into consideration the discussions above, let us imagine using the standard
Laplace equation to generate a blend surface. Here we consider the problem of
generating a blend between a circular cylinder and a flat plane where the plane
is at right angles to the cylinder. Suppose that the cylinder has radius a and that
it is blended in the plane to a circular hole of radius b whereby the height of the
cylinder above the plane is taken to be h. We use standard parametric coordinates
{(u, v) : 0 ≤ u ≤ 1,0 ≤ v ≤ 2π}. The boundary conditions for this problem are:

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_4, © Springer-Verlag London Limited 2011

31

http://dx.doi.org/10.1007/978-0-85729-784-6_4

32 4 Elliptic PDEs for Geometric Design

Fig. 4.1 Surface generated
as a solution to the standard
Laplace equation subject to
circular boundary conditions

x(0, v) = b cosv, y(0, v) = b sinv, z(0, v) = 0,

x(1, v) = a cosv, y(0, v) = a sinv, z(0, v) = h.

With the above we seek a solution which is periodic in v satisfying the three equa-
tions:

∂2x

∂u2
+ ∂2x

∂v2
= 0, (4.1)

∂2y

∂u2
+ ∂2y

∂v2
= 0, (4.2)

∂2z

∂u2
+ ∂2z

∂v2
= 0. (4.3)

By using the method of separation of variables the solutions for the above equations
subject to the above boundary conditions are given as

x(u, v) =
(

b cosu + (b − a cosh 1)
sinhu

sinh 1

)
cosv, (4.4)

y(u, v) =
(

b cosu + (b − a cosh 1)
sinhu

sinh 1

)
sinv, (4.5)

z(u, v) = hu. (4.6)

Taking a = 1, b = 2 and h = 1, Fig. 4.1 shows the resulting shape of the surface.
One should note that the solution of the Laplace equation subject to the boundary
conditions defines a suitable function which defines the surface blend. Since the
Laplace equation is elliptic, it guarantees that the generated solution function is
unique, smooth and takes its maximum and minimum values on the boundary [9].

One can clearly see that apart from the standard Laplace operator, other elliptic
operators can be used. Furthermore, higher order elliptic operators can be used with,
for example, derivative and curvature boundary conditions to allow higher order
continuity at the boundaries.

4.3 The Biharmonic Equation 33

4.2.1 Numerical Solution Using Finite Difference Method

Given the Laplace equation in parametric form defined by the two parameters u

and v, the finite difference method can be employed to approximate the derivatives
(of the Laplace equation) at points in the solution domain. The solution in this case
is worked out by means of discretizing the (u, v) parameter space along the iso-
parametric lines given by u = u1 and v = v1 where u1 and v1 are constants. One
can define a set of points in the (u, v) plane as mesh points where the iso-parametric
lines u1 and v1 intersect. The solution then involves approximating the Laplace
equation at a mesh point in terms of the solution value at the mesh point itself and
the solution values at neighboring points. This process forms a system of linear
equations which can be solved to obtain the whole solution at all the mesh points.

Hence, given the (u, v) parameter space such that u0 ≤ u ≤ ul and v0 ≤ v ≤ vl

we can divide it into a uniform grid of size δu = h and δu = k where h = ul−u0
p−1 and

k = vl−v0
q−1 and pq = n is the total number of mesh points.

If we denote X = (x, y, z) then we have Xij = (xij , yij , zij). With this, the finite
difference approximation for each coordinate space for the second order derivatives
of the Laplace equation can be computed using Taylor expansion [8], e.g.(

∂2x

∂u2

)
ij

� xi+1,j − 2xij + xi−1,j

h2
, (4.7)

(
∂2x

∂v2

)
ij

� xi,j+1 − 2xij + xi,j−1

k2
, (4.8)

and the Laplace equation (for the x-component) can be approximated by the finite
difference scheme as

xi+1,j − 2xij + xi−1,j

h2
+ xi,j+1 − 2xij + xi,j−1

k2
= 0. (4.9)

4.3 The Biharmonic Equation

Similar to the Laplace equation one can also consider the Biharmonic equation,(
∂2

∂u2
+ a2 ∂2

∂v2

)2

X(u, v) = 0. (4.10)

This equation allows the conditions on X along with the conditions on the direction
of tangents to be specified.

Again the solution of Eq. (4.10), and hence the shape of the surface, depends on
both the choice of the parametric domain Ω and the parametrization of the boundary
conditions. As usual the region Ω is taken to be a rectangle such that {Ω : u0 ≤
u ≤ u1; v0 ≤ v ≤ v1}.

Note that the parameter a controls the relative scales of the u and v surface co-
ordinates providing an additional control over the shape of the surface. For large a,

34 4 Elliptic PDEs for Geometric Design

changes in the u direction occur over relatively short length scale, i.e. it is 1/a times
the length scale in the v direction over which similar changes take place [1, 12].

The boundary conditions on the solution of Eq. (4.10) relate how X(u, v) and
its normal derivative in the (u, v) plane, ∂X

∂n
, vary along ∂Ω . The conditions on X

determine the shape of the curves which bound the surface in physical space, and
the derivative boundary conditions on ∂X

∂n
determine the rate and the direction in

which the surface moves away from its boundaries.

4.3.1 Analytic Solution

In order to take advantage of a fast analytic solution method to generate a typical
PDE surface, Eq. (4.10) is solved over a finite region Ω of the (u, v) parameter plane
subject to the periodic boundary conditions on the solution X(u, v), which specify
how X(u, v) and its normal derivative ∂X

∂n vary along ∂Ω . With periodic boundary
conditions, v being the periodic parameter, and using the method of separation of
variables, the analytic solution of Eq. (4.10) can be written as

X(u, v) = A0(u) +
N∑

n=1

[
An(u) cos(nv) + Bn(u) sin(nv)

]
, (4.11)

where

A0 = a00 + a01u + a02u
2 + a03u

3, (4.12)

An = an1e
anu + an2ueanu + an3e

−anu + an4ue−anu, (4.13)

Bn = bn1e
anu + bn2ueanu + bn3e

−anu + bn4ue−anu, (4.14)

where an1, an2, an3, an4, bn1, bn2, bn3 and bn4 are vector-valued constants, whose
values are determined by the imposed boundary conditions at u = u0 and u = u1.
Note that N is a positive integer value.

In the case of the Biharmonic equation, to determine its solution (4.11), and
hence to create a surface, it is necessary to define a set of four boundary conditions:
two positional boundary conditions and two derivative boundary conditions. Taking
Ω to be the region such that {Ω : 0 ≤ u ≤ 1; 0 ≤ v ≤ 2π}, Eq. (4.10) is solved with
the boundary conditions imposed on the solution of the form:

X(0, v) = p1(v), (4.15)

X(1, v) = p2(v), (4.16)

Xu(0, v) = d1(v), (4.17)

Xu(1, v) = d2(v). (4.18)

The boundary conditions p1(v) and p2(v) define the edges of the surface patch at
u = 0 and u = 1, respectively, as parameterized in terms of the v variable. These
conditions are termed the positional boundary conditions. The conditions d1(v) and
d2(v), termed derivative boundary conditions, can be used to determine the surface

4.3 The Biharmonic Equation 35

Fig. 4.2 The effect of derivative conditions on a Biharmonic PDE surface

normals at the corresponding boundaries of the surface. The derivative conditions
play an important role in determining the overall shape of the surface.

For example, Fig. 4.2 shows a sequence of surfaces which illustrate the effect of
the derivative condition for Xu on the shape of the surface. Note that all the surfaces
shown in Fig. 4.2 have the same boundary conditions on the function X whereas the
boundary condition on the function Xu at u = 1 (the top boundary in the figure), in
particular, its direction has been varied (by means of considering circular functions
of varying radii). This illustrates the fact that the derivative conditions control the
direction along which the surface leaves the boundary curves.

One should note that, in order to utilize the solution given in (4.11), the bound-
ary conditions must be given in terms of a periodic function which is equivalent to a
Fourier series with a given number of Fourier modes N . This is indeed a restriction
on the above analytic solution; however, a surprisingly wide variety of geometric
shapes can be generated using this solution scheme whereby the boundary condi-
tions are given as a Fourier series.

In some cases, the boundary conditions are defined as curves in R3, which often
can be in terms of a discrete set of points. For example, it is often the case that the
boundary conditions for a surface patch are defined in terms of a cubic B-spline of
the form

S(v) =
∑

i

ciBi(v). (4.19)

In such cases, in order to utilize the solution given in (4.11), it is necessary to ap-
proximate the curves by discretely sampling them at regular intervals and perform-
ing discrete Fourier analysis. This process is briefly described below.

4.3.1.1 Discrete Fourier Analysis

Given a function f (v) in the form

f (v) = a0 +
∞∑

n=1

[
an cos(nv) + bn sin(nv)

]
, (4.20)

36 4 Elliptic PDEs for Geometric Design

the coefficients a0, an and bn can be defined as

a0 = 2

π

∫ 2π

0
f (v) dv, (4.21)

an = 1

π

∫ 2π

0
f (v) cos(nv)dv, (4.22)

bn = 1

π

∫ 2π

0
f (v) sin(nv)dv. (4.23)

Thus, given a periodic function g(v), in order to approximate the function in the
form given in Eq. (4.20), one would need to approximate the integrals given in
Eqs. (4.21), (4.22) and (4.23).

There are several methods to approximate the integrals and each of them is equiv-
alent to finding the area under the curve. If we sample the periodic function g(v) at
n points of regular intervals of the angle s then∫ 2π

0
g(v) dv � s(g0 + g1 + g2 + · · · + gn−1). (4.24)

The accuracy of the computation depends on the sampling number.
Given g(v) as a set of evenly spaced function values, a simpler way of computing

the integrals is by finding the mean value of the functions g(v), g(v) cos(nv) and
g(v) sin(nv) for successive n, over the complete cycle of the sample space [5], i.e.

2

π

∫ 2π

0
g(v) dv = 2 × mean value of g(v) over a period, (4.25)

1

π

∫ 2π

0
g(v) cos(nv)dv = 2 × mean value of g(v) cosnv over a period, (4.26)

1

π

∫ 2π

0
g(v) sin(nv)dv = 2 × mean value of g(v) sinnv over a period. (4.27)

4.3.2 Geometric Properties of the Biharmonic PDE

The Biharmonic operator can be seen to act as a smoothing operator which enables
producing an interpolating surface for a given set of boundary data. The resulting
surface in the above case is provided as an analytic expression and is infinitely
differentiable. An important point to highlight here is that, since we are treating
surface generation as a boundary-value problem, the resulting surface is entirely
dependent on the boundary conditions, and hence the boundary conditions can be
utilized as a surface manipulation tool.

Common parametric surface generation methods such as those based on spline
techniques have attractive geometric properties through which the behavior of the
surface subject to changes in the relating control points are somewhat intuitive. For
example, in the case of Bézier surfaces, the convex hull property guarantees that the

4.4 General Elliptic PDEs 37

resulting surface is entirely bounded within the convex hull of the control polygons
which determine the shape of the surface. In the case of surfaces generated as so-
lutions of PDEs, in particular low order elliptic PDEs, similar geometric properties
can be identified. Thus, in the case of PDE surfaces discussed here, one can also
show that the resulting surface behaves in an intuitive fashion subject to changes in
the boundary data.

As discussed in the previous section for the Laplace equation, one can show
(through the min/max principle) that the maximum/minimum of the interpolating
function occurs at the boundaries of the surface patch [9]. Whilst this desirable
property holds for the Laplace equation, the surfaces generated by it are somewhat
limited since there are only two boundary conditions available for the user to define
a surface patch. The Biharmonic equation, on the other hand, is more powerful
since the user can impose four boundary conditions, two defining the edges of the
surface patch and the two defining the rate of change of these edges which determine
the interior of the surface patch. Though there is no maximum/minimum principle
for the Biharmonic equation, one can still find a priori estimates on the bounds
of the interpolating function resulting from the Biharmonic equation. This can be
undertaken by applying the maximum/minimum principle for the quantity ‖ ∇X ‖2

−X∇2X and applying the maximum modulus theorem [10] so that

‖X‖ ≤ K
(‖X0‖ + ∥∥(∂X/∂n)0

∥∥), (4.28)

where Eq. (4.10) is solved over the region Ω subject to the conditions X = X0 and
(∂X/∂n) = (∂X/∂n)0 on the boundary of Ω . Here K is a constant which depends
only on the Biharmonic operator and the geometric shape of Ω . Equation (4.28)
indicates that the resulting surface will be of order corresponding to the maximum
dimensions of the boundary conditions summed with the maximum rate of change
of distance with which the surface moves away from the boundary.

4.4 General Elliptic PDEs

The boundary-value approach on which the elliptic PDE model is based can be
described as follows. Assuming we employ the usual parametric coordinates such
that X(u, v) is a parametric function which gives the surface in R3, we can regard
X as the solution of a PDE of the form

Dm
u,v(X) = F(u, v), (4.29)

where Dm
u,v is a partial differential operator of order m in independent variables u

and v, and F is a vector-valued function of u and v.
Similar to the discussion regarding the Biharmonic operator, the general partial

differential operator in Eq. (4.29) is a smoothing operator in which the function
values at any point on the surface represents, in a sense, a weighted average of the
surrounding values. Thus, a surface is obtained as an average of the imposed bound-
ary conditions. Furthermore, surfaces generated using this technique are fair [11] in
the sense that they do not possess small scale oscillations, provided, of course, such

38 4 Elliptic PDEs for Geometric Design

oscillations do not exist in the boundary conditions. Also, excluding the possibility
of discontinuities at the boundary conditions, PDE surfaces are infinitely differen-
tiable (even for discontinuities on boundaries, the function X(u, v) is differentiable)
on the surface interior.

In order to generalize the formulation of the Laplace and Biharmonic equation
to a general PDE of elliptic type, we proceed as follows. For the general case, we
require an elliptic PDE that satisfies a given number of 2N boundary conditions.
Here N is an arbitrary integer such that N ≥ 2. The boundary conditions can be
given in the form,

X(0, v) = f1(v), (4.30)

X(ui, v) = gi (v), i = 2, . . . ,2N − 1, (4.31)

X(1, v) = f2N(v), (4.32)

where f1(v) in Eq. (4.30) and f2N(v) in Eq. (4.32) are function boundary condi-
tions specified at u = 0 and u = 1, respectively. The conditions X(ui, v) = gi (v) in
Eq. (4.31) can take the form of either

X(ui, v) = fi (v) for 0 < ui < 1, i = 2, . . . ,2N − 1, (4.33)

or may involve

∂X
∂u

,
∂2X
∂u2

,
∂3X
∂u3

, . . . ,
∂2N−2X
∂u2N−2

for 0 ≤ ui ≤ 1, i = 2, . . . ,2N − 1. (4.34)

In simpler terms, the above boundary condition implies that for a PDE surface
patch of order 2N we can specify two function boundary conditions, as given in
Eqs. (4.30) and (4.32), that should be satisfied at the edges (at u = 0 and u = 1)
of the surface patch, and a number of function or derivative conditions, as given in
Eq. (4.31), amounting to 2N − 2 boundary conditions which the PDE should also
satisfy.

With the above formulation, we take the standard Laplace equation, ∇2X = 0, as
a base PDE and generalize it to the N th order such that(

∂2

∂u2
+ a2 ∂2

∂v2

)N

X(u, v) = 0. (4.35)

4.4.1 Analytic Solution

Given a set of 2N boundary conditions as defined in Eqs. (4.30), (4.31) and (4.32),
we take the (u, v) parameter space Ω to be the region {u,v : 0 ≤ u ≤ 1;0 ≤
v ≤ 2π}. Thus, we assume that all the boundary conditions are periodic in v in
the sense f0(0) = f0(2π), f1(0) = f1(2π) and gi (0) = gi (2π). We further assume
that all the boundary conditions are continuous functions within the domain Ω .

4.4 General Elliptic PDEs 39

With the above assumptions on the boundary conditions, we can utilize the
method of separation of variables to write the analytic solution of Eq. (4.35) as

X(u, v) = A0(u) +
∞∑

n=1

[
An(u) cos(nv) + Bn(u) sin(nv)

]
, (4.36)

where

A0 = a00 + a01u + a02u
2 + · · · + a(2N−1)u

2N−1, (4.37)

An = an1e
anu + an2ueanu + an3e

−anu + an4ue−anu + · · ·
+ an(2N−3)u

N−2eanu + an(2N−2)u
N−1eanu + an(2N−1)u

N−2e−anu

+ an2NuN−1e−anu, (4.38)

Bn = bn1e
anu + bn2ueanu + bn3e

−anu + bn4ue−anu + · · ·
+ bn(2N−3)u

N−2eanu + bn(2N−2)u
N−1eanu + bn(2N−1)u

N−2e−anu

+ bn2NuN−1e−anu, (4.39)

where a00 + a01, a02, . . ., a2N−1, an1 + an2, an3, an4, . . ., an(2N−3), an(2N−2),
an(2N−1), an2N and bn1 +bn2,bn3,bn4, . . . ,bn(2N−3),bn(2N−2),bn(2N−1),bn2N are
vector-valued constants, whose values are determined by the imposed boundary con-
ditions at ui where 0 ≤ ui ≤ 1.

Since the chosen boundary conditions are all continuous functions which are also
periodic in v, we can write down their Fourier series representation as

f1(v) = C1
0 +

∞∑
n=1

[
C1

n cos(nv) + S1
n sin(nv)

]
, (4.40)

gi (v) = Ci
0 +

∞∑
n=1

[
Ci

n cos(nv) + Si
n sin(nv)

]
, i = 2, . . . ,2N − 1, (4.41)

f2N(v) = C2N
0 +

∞∑
n=1

[
C2N

n cos(nv) + S2N
n sin(nv)

]
. (4.42)

If we now assume for the moment that the Fourier sums in the Expressions
(4.40), (4.41) and (4.42) have finite M modes, then the vector constants C1

0, Ci
0

for i = 2, . . . ,2N − 1, and C2N
0 can be obtained by directly comparing them with

the constants a00, a01, a02, . . . , a(2N−1) given in Eq. (4.37). Now for each of the
Fourier modes n ∈ {1, . . . ,M} we can write linear systems⎛

⎝ an1
...

a2N

⎞
⎠ = A(a,n)

⎛
⎝ C1

n
...

C2N
n

⎞
⎠ (4.43)

and ⎛
⎝ bn1

...

b2N

⎞
⎠ = B(a,n)

⎛
⎝ S1

n
...

S2N
n

⎞
⎠ , (4.44)

40 4 Elliptic PDEs for Geometric Design

where A(a,n) and B(a,n) are 2N ×2N matrices whose coefficients can be obtained
by solving the linear systems (4.43) and (4.44), subject to the Fourier coefficients
corresponding to the 2N boundary conditions.

The above solution scheme is based on the fact that the boundary conditions can
be expressed as finite Fourier series. However, in practical design scenarios such an
assumption is not a realistic proposition. In order to take care of this, one can adopt
a generalized version of the spectral approximation to the Biharmonic PDE given in
[3, 4] as described below.

Although in practical terms we cannot assume that a given boundary condition
can be expressed accurately using a finite Fourier series, it is reasonable to assume
that the boundary conditions can be written as,

f1(v) = C1
0 +

M∑
n=1

[
C1

n cos(nv) + S1
n sin(nv)

]+ R1(v), (4.45)

gi (v) = Ci
0 +

M∑
n=1

[
Ci

n cos(nv) + Si
n sin(nv)

]+ Ri (v), i = 2, . . . ,2N − 1,

(4.46)

f2N(v) = C2N
0 +

M∑
n=1

[
C2N

n cos(nv) + S2N
n sin(nv)

]+ R2N(v). (4.47)

Thus, the basic idea here is to formulate each of the boundary conditions in terms of
the sum of a finite Fourier series containing M modes and a ‘remainder’ term Ri (v),
i = 1, . . . ,2N , which contains the higher order Fourier modes. For the case of Bi-
harmonic equation, it is shown that the higher order Fourier modes make negligible
contributions to the interior of the PDE patch, and the same applies for the gen-
eral case of the N th order Biharmonic PDE [3]. Hence it is reasonable to truncate
the Fourier series at some finite M (typically M = 6 is adequate) and represent the
contribution of the high frequency modes to the surface with a remainder function
R(u, v). The format of this remainder function is somewhat arbitrary and for this
work it is taken to be of the form

R(u, v) = r1e
ωu + r2ueωu + r3e

−ωu + r4ue−ωu + · · ·
+ r(2N−3)u

N−2eωu + r(2N−2)u
N−1eωu + r(2N−1)u

N−2e−ωu

+ r2NuN−1e−ωu, (4.48)

where r1, r2, . . ., r(2N−1), r2N are vector-valued constants which depend on v.
Now by taking X̃(u, v) to be the approximate solution,

X̃(u, v) = A0(u) +
M∑

n=1

[
An(u) cos(nv) + Bn(u) sin(nv)

]
, (4.49)

satisfying the boundary conditions of the finite Fourier series, we define difference
functions such that

4.5 Other Variations of the General Elliptic Equation 41

df1(v) = df1(v) − X̃(0, v), (4.50)

dgi (v) = gi (v) − X̃(ui, v), i = 2, . . . ,2N − 1, (4.51)

df2N(v) = df1(v) − X̃(1, v). (4.52)

By choosing ω in Expression (4.48) to be an, the vector constants r1, . . . , r2N

can be computed by means of direct comparison with the difference terms df1(v),
df2N(v) and dgi (v), for i = 2, . . . ,2N − 1 in Eqs. (4.50)–(4.52).

Finally, the approximate analytic solution of the PDE is given as

X(u, v) = X̃(u, v) + R(u, v). (4.53)

It is important to note that the choice of the number of Fourier terms M will
affect how well X̃(u, v) approximates the solutions of the general N th order Bihar-
monic PDE. Although this may be the case, due to the choice of difference functions
utilized here, i.e. by computing the difference between the original boundary condi-
tions and the corresponding finite Fourier series, as described in Eqs. (4.50)–(4.52),
the approximate solution satisfies the chosen set of boundary conditions exactly, to
within the machine accuracy.

4.5 Other Variations of the General Elliptic Equation

The original formulation of the PDE method makes use of a fourth order elliptic
PDE. However, alternatives for such a formulation have been developed throughout
[6, 7, 15]. Such alternatives have been developed in order to fulfill specific require-
ments relating to a particular application. For instance, sixth order elliptic PDEs
have been used in order to guarantee continuity in the curvature throughout the
PDE surface. This formulation uses the following elliptic PDE(

a
∂6

∂u6
+ b

∂6

∂u4∂v2
+ c

∂6

∂u2∂v4
+ d

∂6

∂v6

)
X(u, v) = 0, (4.54)

where a, b, c and d are shape control parameters. The reader can see that the differ-
ences include the order of the elliptic PDE, which in this case is of the sixth order,
and the four shape control parameters within the PDE itself instead of just one as
established in the original formulation [14, 15].

Another modification carried out to the standard formulation of the PDE method
is based on the use of the four boundary conditions determined by the user as po-
sitional boundary conditions. That is, taking for an example the Biharmonic equa-
tion, the same positional boundary conditions p1 and p2 are used as before, but the
derivative conditions d1 and d2 are also used as positional boundary conditions at
u = u2 and u = u3, respectively, with 0 ≤ u2 ≤ u3 ≤ 1.0. This requires a number
of modifications to the matrices defining the systems of algebraic equations to be
solved. However, the core of the methodology followed to find the solution of the
PDE remains unchanged. These modifications can be carried out to satisfy special
needs of particular applications in which the user is more interested in obtaining a
surface passing through all the given curves.

42 4 Elliptic PDEs for Geometric Design

Fig. 4.3 Geometry of a
cup-like shape using the
Biharmonic equation

Fig. 4.4 Shape of a delta
airplane surface generated
using eight surface patches
with common boundary
conditions using the
Biharmonic equation

4.6 Examples

In this section, we discuss a number of examples of generating complex geometry
using elliptic PDEs discussed above.

Figure 4.3 shows the geometry of a cup-like shape. This shape is generated using
two PDE surface patches with a common boundary condition. The boundary con-
ditions are defined in terms of finite Fourier series which are utilized to generate
the function definition of the surfaces through the Biharmonic equation. Here the
surface patches meet each other at the common boundaries, the derivative boundary
conditions were chosen to ensure that the surfaces are blended together with tangent
continuity.

Figure 4.4 shows the shape of a B17 airplane generated using eight surface
patches with common boundary conditions. The shape generating PDE utilized here
is again the Biharmonic equation where the boundary conditions are defined in terms
of finite Fourier series. The fuselage shape in this case is generated using a single
surface patch to which the wing surface patches are blended. In a similar fashion,
surface patches corresponding to the tail part of the airplane are generated. Addi-
tionally, two separate surfaces are then generated corresponding to the two engine
shapes.

Figure 4.5 shows the shape of Klein bottle generated as using the general elliptic
PDE. As for the boundary conditions, here we have taken cross-sectional curves of
the Klein bottle defined in analytic form given by

x =
{

α cos(u)(1 + sin(u)) + γ cos(u) cos(v) if 0 ≤ u < π ,

α cos(u)(1 + sin(u)) + γ cos(v + π) if π ≤ u ≤ 2π ,
(4.55)

4.6 Examples 43

Fig. 4.5 Shape of a Klein
bottle generated using the
general elliptic PDE or order
40

Fig. 4.6 Original scan data
corresponding to a 3D face

y =
{

β sin(u) + γ sin(u) cos(v) if 0 ≤ u < π ,

β sin(u) if π ≤ u ≤ 2π ,
(4.56)

z = γ sin(v) (4.57)

where 40 cross-sectional ellipses along u were taken with 0 ≤ v ≤ 2π , α = 6,
β = 16 and γ = 4(1 − cos(u)/2). In order to generate the full Klein bottle shape,
the 40th order general elliptic PDE was solved.

As a last example in this section, we discuss how an existing geometry data can
be represented using PDEs. Here we take the case of representing a face given the
corresponding data from a 3D laser scanner.

Figure 4.6 shows a typical facial data set which is obtained from a 3D scanner.
The raw data from the 3D scanner has the information on the location of data points
in the physical space and a triangular connectivity defined between these points.
Taking this data, one can define a series of planes through which the data passes.
For each such plane, one can then identify the points from scan data which belong to
the plane. Hence, using this technique, a series of profile curves can be automatically
extracted.

44 4 Elliptic PDEs for Geometric Design

Fig. 4.7 Data points
corresponding to an ordered
set of curves for defining the
PDE boundary conditions

Fig. 4.8 PDE based
reconstruction of the face

Figure 4.7 shows such profile curves which have been automatically extracted for
data corresponding to the face shown in Fig. 4.5. Once the curves are extracted, for
each curve we then fit a cubic spline. This process of curve fitting to the extracted
discrete curve data enables having a smooth curve passing through the discrete data
as well having an equal number of curve points for each profile curve. Data points
at regular intervals from the spline curves are then sampled to obtain the necessary
Fourier series which are taken as boundary conditions for the PDE.

Once the discrete Fourier series for the profile curves are available, they are then
categorized into groups of four and the Biharmonic equations with function bound-
ary conditions are solved appropriately to generate the shape of the face as shown
in Fig. 4.8.

4.7 Conclusions 45

4.7 Conclusions

This chapter has introduced the idea of boundary-value approach to surface de-
sign whereby elliptic PDEs are used subject to a certain set of boundary conditions.
Common elliptic PDEs and their generalizations have been considered. Solution
schemes, particulary Fourier based fast analytic solution schemes have been dis-
cussed.

References

1. Bloor MIG, Wilson MJ (1989) Generating blend surfaces using partial differential equations.
Comput Aided Des 21(3):33–39. doi:10.1016/0010-4485(89)90071-7

2. Bloor MIG, Wilson MJ (1989) Blend design as a boundary-value problem. In: Straßer W,
Seidel HP (eds) Theory and practise of geometric modelling. Springer, Berlin, pp 221–234

3. Bloor MIG, Wilson MJ (1996) Spectral approximations to PDE surfaces. Comput Aided Des
82(2):145–152. doi:10.1016/0010-4485(95)00060-7

4. Bloor MIG, Wilson MJ (2005) An analytic pseudo-spectral method to generate a regular
4-sided PDE surface patch. Comput Aided Geom Des 22(3):203–219. doi:10.1016/j.cagd.
2004.08.005

5. Brigham EO (1988) The fast Fourier transform and its applications. Prentice Hall, New York
6. Du H, Qin H (2000) Direct manipulation and interactive sculpting of PDE surfaces. Comput

Graph Forum 19(3):261–270. doi:10.1111/1467-8659.00418
7. Du H, Qin H (2007) Free-form geometric modeling by integrating parametric and implicit

PDEs. IEEE Trans Vis Comput Graph 13(3):549–561. doi:10.1109/TVCG.2007.1004
8. Greenberg M (1998) Advanced engineering mathematics. Prentice Hall, New York
9. Reed M, Simon B (1978) Methods of modern mathematical physics IV: analysis of operators.

Academic Press, San Diego
10. Sperb R (1981) Maximum principles and their applications. Academic Press, San Diego
11. Taubin G (1995) A signal processing approach to fair surface design. In: Computer Graphics

Proceedings, pp 351–358. doi:10.1145/218380.218473
12. Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE

method. ACM Trans Graph 18(2):195–212. doi:10.1145/318009.318078
13. Woodward CD (1987) Blends in geometric modelling. In: Martin RR (ed) Mathematical meth-

ods of surfaces II. Oxford University Press, London, pp 255–297
14. Zhang JJ, You LH (2001) Surface representation using second fourth and mixed order par-

tial differential equations. In: International conference on shape modeling and applications,
Genova, Italy

15. Zhang JJ, You LH (2002) PDE based surface representation—vase design. Comput Graph
26(1):89–98. doi:10.1016/S0097-8493(01)00160-1

http://dx.doi.org/10.1016/0010-4485(89)90071-7
http://dx.doi.org/10.1016/0010-4485(95)00060-7
http://dx.doi.org/10.1016/j.cagd.2004.08.005
http://dx.doi.org/10.1016/j.cagd.2004.08.005
http://dx.doi.org/10.1111/1467-8659.00418
http://dx.doi.org/10.1109/TVCG.2007.1004
http://dx.doi.org/10.1145/218380.218473
http://dx.doi.org/10.1145/318009.318078
http://dx.doi.org/10.1016/S0097-8493(01)00160-1

Chapter 5
Interactive Design

Abstract Using elliptic PDEs described in the previous chapter, especially using
the Biharmonic equation, one can create the shape of an initial surface. This can be
carried out through the interactive specification of curves which can be taken as the
boundary conditions for the chosen PDE. Once this is done, it may be necessary to
further manipulate the geometry in order to improve the shape. Hence, it is desirable
to have as much control as possible over the shape of the surface once it has been
defined.

5.1 The Approach to Interactive Surface Design

In this section, we discuss how one can develop a system based on PDEs to create a
physically realistic object. It is noteworthy, like many other geometric design soft-
ware users, the person who may use a geometric design system based on PDEs may
not necessarily know how to solve complex PDEs, nor would she/he necessarily be
familiar with the influence of the boundary conditions on the solution of the cho-
sen PDE. Therefore, a methodology must exist which allows the user to operate in
an instinctive way to produce the desired surface shape. In other words, the details
of the mathematical resolution of the underlying boundary-value problem must be
hidden from view.

If we take the standard Biharmonic equation as an example of an interactive
design tool, then, in order to determine the solution of Eq. (4.10), and hence to
create a surface, it is necessary to define a set of four boundary conditions, i.e.
two positional boundary conditions and two derivative boundary conditions. The
positional boundary conditions determine the shape of the boundaries or the edges
of the surface patch, and the derivative boundary condition determine the direction
along which the surface propagates from the edges into the interior of the surface.
This can be done by means of defining the boundary conditions in terms of curves
in R3. Thus, to enhance the ease with which the user can specify the boundary
conditions, and for the user to be able to readily appreciate the influence of the
boundary conditions on the shape of the surface, we need to define the boundary
conditions in terms of curves in R3.

Here one can implement a technique to create a boundary curve in R3, within
a graphical user interface where the user is able to interact with the boundary con-

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_5, © Springer-Verlag London Limited 2011

47

http://dx.doi.org/10.1007/978-0-85729-784-6_5

48 5 Interactive Design

Fig. 5.1 An example
boundary curve which can be
used to define the PDE
boundary conditions
interactively

ditions and other associated parameters using the usual computer hardware devices
such as the mouse.

One method of creating curves in R3 is using B-splines. Consider the space curve
lying in the xy plane which is defined by means of a cubic B-spline of the form

S(v) =
∑

i

ciBi(v), (5.1)

where the control points ci can be used to manipulate the curve, i.e., to change the
shape of this curve in the xy plane, the control points can be moved around with the
aid of the mouse. Once a desired shape of the curve in the xy plane is achieved, a
different plane (xz or yz) can be chosen where the curve can be further manipulated,
by moving around the control points, without changing the projection of the curve in
the original xy plane. An example of a curve that results from this process is shown
in Fig. 5.1.

Apart from defining the boundary curves using B-spline functions, a library of
standard plane curves, such as the circle and the ellipse, can also be created, which
the user would able to select by clicking on a menu using the mouse. Various geo-
metric transformations such as translations and rotations can then be applied to such
a curve in order to create a curve in R3.

Figure 5.2 shows examples of curves in R3 created interactively. Such curves
can be used to define the necessary boundary conditions of the PDE as discussed
below. The curve at u = 0 corresponds to p1(v), and that at u = 1 corresponds to
p2(v). For convenience, the curves are marked p1 and p2 where p1 corresponds to
the boundary condition p1(v) and p2 corresponds to the boundary condition p2(v).

Once the desired shape of the curve (which represents a ‘character-line’ of the
desired shape of the surface) is created, we can obtain an ordered set of the points in
R3 on the curve. However, such a discrete representation of the curve (i.e. in terms of
coordinates of the points) is not in a suitable form with which to define the boundary
conditions to solve the PDE by the solution method described earlier. In particular,
the coefficients of the Fourier modes representing the curve are what is required.
To obtain these coefficients, a discrete Fourier transform of the curve needs to be
performed, and for this purpose it is important to choose a suitable parametrization
for the curve. One way to do this is to parameterize the curves in terms of arc length
in terms of the variable v.

Referring to the curves in Fig. 5.2(a), the point marked by a cross on each curve is
the position of the point where v = 0. This point serves as a rather useful parameter,
which controls v-parametrization [4, 9].

5.1 The Approach to Interactive Surface Design 49

Fig. 5.2 Illustration of how
to choose the PDE boundary
conditions for the Biharmonic
equation

Using the above described procedures, a user is able to define a space curve and
position it in R3. Hence a user is effectively able to define the boundary conditions
on the function X(u, v).

Described next is a technique which can be implemented in order to define the
boundary conditions d1(v) and d2(v) on the function ∂X

∂u
, which is the normal

derivative of X on the boundaries at u = 0 and u = 1, respectively. There are several
ways by which the boundary conditions on Xu can be defined. One way to do this
is to define a vector field, which is referred to as the ‘derivative vector’, along the
positional boundary curves. To define such a derivative vector, one can create a new
curve in R3 near each boundary curve at u = 0,1. The difference between each point
on this newly defined ‘derivative’ curve (where there is a one-to-one association of
points on the two curves) and an associated point on the curve corresponding to the
positional boundary conditions determines both the magnitude (to within a scaling
factor s) and the direction of the derivative vector. In other words, the vector fields,
corresponding to the difference between the points on the curves marked p1 and p2
and those marked d1 and d2, respectively, define the function ∂X

∂u
. Thus,

∂X
∂u

= [
p(v) − d(v)

]
s, (5.2)

which serves as the derivative boundary conditions. Figure 5.2 illustrates how the
derivative vector is defined by this method. For convenience, the derivative curves
are marked d1 and d2, where d1 corresponds to the boundary condition d1(v) and
d2 corresponds to the boundary condition d2(v).

As previously mentioned, once the boundary (both positional and derivative)
curves are defined, discrete Fourier transforms of the curves are then performed to

50 5 Interactive Design

Fig. 5.3 PDE boundary
curves and the corresponding
surface

determine the coefficients of the Fourier modes. These coefficients, which determine
the necessary boundary conditions of the PDE, are used to compute the solution of
the PDE. From the solution of the PDE, a rectangular mesh of points can be ob-
tained, which can be used to render or represent the surface. Since the (u, v) mesh
in R2 is an ordered rectangular mesh, it is relatively easy to formulate the quadrilat-
eral polygonal mesh of the surface in R3. Thus, the mapping, which exists between
the (u, v) points in the parameter space and the points in R3 of the surface, is used
to create an ordered polygonal set of surface points in R3. Figure 5.3(a) shows the
PDE surface which corresponds to the boundary curves shown in Fig. 5.3(b).

As an example of interactive surface manipulation, let us take the initial surface
shown in Fig. 5.4(b) as the initial surface with associated boundary curves shown in
Fig. 5.4(a). The influence of the derivative vector field on the shape of the surface
can be seen by considering Fig. 5.4(c) and Fig. 5.4(d). In Fig. 5.4(c), the derivative
curve associated with u = 1 has been translated ‘downwards’ along the direction
of local Xu. This changes the position of the derivative curve, and hence a change
in the size of the derivative vector field is brought about. Figure 5.4(d) shows the
surface corresponding to the boundary conditions shown in Fig. 5.4(c).

5.2 Trimming PDE Geometry 51

Fig. 5.4 The effect of change in the size and the direction of the derivative vector on the shape of
a Biharmonic PDE surface

5.2 Trimming PDE Geometry

For many practical designs, it may be necessary to blend one surface, or part of
it, to another. In blending, we are often given the ‘primary surfaces’ which define
the bulk of the object’s shape, and we seek ‘secondary surfaces’ to form a smooth
transition between the primary surfaces [5]. The problem of generating a smooth
blend between two given adjacent surfaces is not a trivial task, e.g. in many cases,
to obtain a satisfactory blend, some form of ‘trimming’ of the associated surface
needs to be performed.

As far as surface design using PDEs is concerned, the problem of blend gener-
ation is thought of as a boundary-value problem in which a blending PDE surface
patch is generated between the boundaries defined on the adjacent surfaces. Since
the boundaries of the two surfaces, between which the blend needs to be generated,
are well-defined, it is straightforward to generate a surface patch between the two

52 5 Interactive Design

Fig. 5.5 Identification of a
point on the parameter space
and the corresponding point
on the surface

surfaces by specifying the appropriate derivative conditions. If tangent-plane conti-
nuity between the blend and the surface it meets is required, this can be imposed by
choosing the derivative vectors appropriately.

In order to trim a region of the surfaces, one would first need to determine the
exact position of the surface from which the portion needs to be removed. Any
chosen point in the (u, v) parameter space will have an associated point on the
surface. For the purpose of removing the section interactively, the use of a graphical
interface associated with the interactive environment will enable a user to visualize
both the surface and the (u, v) parameter space. For example, in Fig. 5.5(b), the
point marked ‘X’ on the surface is identified as the image point of the marked (u, v)

shown in Fig. 5.5(a) in the parameter space.
Furthermore, the image of a plane curve drawn in the (u, v) parameter space

will be guaranteed to lie on the surface. This curve can then be manipulated in the
parameter space—in the case of a polynomial B-spline, for example, by moving its
control points to achieve the desired shape in R3 of the portion of the surface to be
removed. The image curve on the surface can then be interactively manipulated by
moving the control points of the curve in the (u, v) parameter space since the shapes
of both curves can be visualized simultaneously. Figure 5.6(a) shows a curve in the
parameter space and Fig. 5.6(b) shows the image of the same curve on the surface.
Thus, it is not a difficult task to create the desired shape of a curve on the surface
by editing the curve in the parameter space in the light of real time feedback on the
shape of the surface curve from its image on the screen.

Once the shape of the curve in the parameter space is decided, a rectangle bound-
ing the curve in the parameter space is determined. Note that the edges of the rect-

5.2 Trimming PDE Geometry 53

Fig. 5.6 A curve on the
parameter space and the
corresponding curve in R3 on
the surface

Fig. 5.7 A curve and its
bounding rectangle in the
(u, v) parameter space

angle lie along the parameter lines. The original (u, v) mesh points belonging to the
interior of this rectangle are then discarded. A separate (u, v) mesh is then calcu-
lated over the annular region between the rectangle and the curve in the parameter
space, which amounts to a re-parametrization of the original surface over its annular
region.

One way to re-parameterize the trim region to determine the new (u, v) points is
by means of a bilinear interpolation between points on the rectangle and the associ-
ated points on the curve as described below.

Figure 5.7 shows a curve in the (u, v) parameter space and the bounding rectan-
gle. It is required to calculate a mesh of points for the region R between the curve
and the rectangle.

Using known points on the curve, one can determine the centroid (Cu,Cv) of
the curve. The next step is to define a local Cartesian coordinate system in R2 with
the point (Cu,Cv) being at the origin. Here the local x and y axes are taken to be

54 5 Interactive Design

Fig. 5.8 The (u, v)

parameter space

parallel to the u and v directions of the parameter space, respectively. The points on
the curve which are to be associated with the four corners of the rectangle can now
be determined from the intersection of the line segment between (Cu,Cv) and the
corresponding corner of the rectangle. This allows the region R to be subdivided
into four regions R1, R2, R3 and R4 as shown in Fig. 5.7 and Fig. 5.8.

Bilinear interpolations can now be carried out for each of these four regions sep-
arately. Since the same procedure can be used to compute the bilinear interpolation
for each of the regions R1, R2, R3 and R4, here it is shown how to compute such
an interpolation for the region R1. Similar computations can be performed for the
regions R2, R3 and R4.

Assuming that the number of discrete points on the curve segment s1s2 is p,
we can subdivide the line segment r1r2 of the rectangle, uniformly with distance,
(p−1) times. This provides us with points on the curve segment s1s2 and associated
points on the line segment of the rectangle r1r2. Now we subdivide each of the line
segments, formed between the points on the curve segment s1s2 and the associated
points on the line segment r1r2, (p − 1) times. This provides us with a grid of p ×p

points within the region R1. The procedure can then be repeated for the rest of the
regions R2, R3 and R4 to obtain the complete mesh.

Once the mesh between annular region of the curve and the bounding rectan-
gle is calculated, it is then straightforward to calculate the corresponding surface
points and surface normals for this new parametrization of the original surface using
the routines which computed these quantities for the original surface. Figure 5.9(a)
shows a wire-frame version of a surface from which a portion has been removed.
Figure 5.9(b) shows the same surface from which a number of other regions of dif-
ferent shapes and sizes have been removed interactively.

The calculation of the mesh over the annular region between the curve in the
parameter space and the bounding rectangle depends on the shape of the curve. For
a curve having a convex shape, the mesh can be calculated by bilinear interpolation
between points on the rectangle and the associated points on the curve as described
above. However, one has to be more careful where a portion of the curve is con-
cave. One possible method to avoid this sort of complications is to perform complex
meshing on trim regions of (u, v) and to use the Laplace equation involving the trim
curves over the (u, v) parameter space as discussed below.

Consider Fig. 5.10 showing the parametric region where the circular curve
marked as C1 is a trim curve. In order to define a valid mesh within the interior
of the parametric region which discards the trim region, one can solve the Laplace
equation subject to a set of two boundary conditions. Assuming the region in which

5.2 Trimming PDE Geometry 55

Fig. 5.9 Examples of
sections removed from PDE
surfaces

meshing is to be performed can be mapped to a finitely discretized region belonging
to 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π , one can assume the mesh M(u, v) is the solution of
the Laplace equation (

∂2

∂u2
+ ∂2

∂v2

)
M(u, v) = 0. (5.3)

The boundary conditions for Eq. (5.3) are taken to be the curves C1 and C2 where
C2 is the square border curve. Note that both curves C1 and C2 are periodic with
v = 0 being at the positions marked by the dotted line in Fig. 5.10(a). Thus, one
could imagine that, by solving Eq. (5.3) between the region defined by the curves
C1 and C2, we can obtain a smooth transition between the two curves which will
enable us to obtain the required mesh.

In order to carry out the trimming fast enough to be able to generate trimmed
geometry in real time, we utilize analytic solution scheme where the above defined
periodic boundary curves are utilized. This solution scheme is, in fact, very similar
to the analytic solution scheme for the general elliptic PDE discussed previously.
Thus, for Eq. (5.3), the periodic boundary conditions can be expressed as M(0, v) =
C1(v), M(1, v) = C2(v). Figure 5.10(b) shows a surface on which the trim region
corresponding to Fig. 5.10 has been removed.

56 5 Interactive Design

Fig. 5.10 Meshing the trim
region using the Laplace
equation. (a) A trim curve
defined on the parametric
domain. The boundary
conditions defined by C1 and
C2 are utilized to solve the
Laplace equation within the
parametric domain. (b) The
trimmed PDE surface

5.2.1 Manipulating Blend Geometry

Here we describe, with the aid of an example, how blend geometry can be manipu-
lated. Figure 5.11(a) shows part of a teacup created interactively in which the bowl
and the handle are two surface patches blended together, by means of performing
appropriate trimming where the handle meets the bowl. Since any point on a surface
corresponds to a point in its (u, v) parameter space, the curves where the handle
meets the bowl are the images of curves in the (u, v) parameter space of the bowl.

This curve can be changed interactively within the (u, v) parameter space.
This results in the translation of the intersection curve on the bowl surface. This
procedure allows the position of the handle to be quickly changed interactively.

5.3 Spine of PDE Geometry 57

Fig. 5.11 The shape of an
interactively designed tea cup
and the shape of its
interactively manipulated
handle

Figure 5.11(b) shows the adjustments made to the position of one of the ends of the
handle of the cup starting from that shown in Fig. 5.11(a).

5.3 Spine of PDE Geometry

The spine of an object can be defined as the trace of the centers of all spheres (disks
in the case of two dimensions) that are maximally inscribed in that object. The spine
of an object has a very close geometric resemblance to the more widely known
shape entity called the medial axis or the skeleton. The spine of a shape brings out
the symmetries in that shape and can posses far richer topologies than the shape
it is derived from. Other important properties of the spine of a shape include its
use in the intermediate representation of the object and its canonical general form
that can be used to represent the object by a lower-dimensional description. Thus,
the spine of an object has its natural intuitive appeal in applications in geometric
manipulations. For example, Blum [1] suggested that the spine or the skeleton as
a powerful mechanism for representing the shape of two-dimensional objects at
a level higher than cell-enumeration. He proposed a technique that can uniquely
decompose a shape into a collection of sub-objects that can be readily identified
with a set of basic primitive shapes.

For PDE surfaces described here, the spine of the resulting geometry can be
realized easily by exploiting the structural form of a closed form solution for the
chosen PDE. Thus one can show that the spine of a PDE surface can be generated
as a by-product of this solution [2].

58 5 Interactive Design

Let us take the general N th order elliptic PDE described in the previous chapter.
If we draw our attention to the term A0 in Eq. (4.12), we note that it takes the form
of a polynomial of degree (2N −1). By looking at the structure of the PDE solutions
given in Eq. (4.11), we can arrive at the following conclusions.

From the structure of the solution to (2N)th order PDE given in Eq. (4.11), one
can see that a surface point X(u, v) can be thought of being a sum of the vector
A0 giving the ‘center line’ of the surface and a radius vector defined by the term∑∞

n=1[An(u) cos(nv) + Bn(u) sin(nv)] providing the position of X(u, v) relative to
the ‘center line’. Thus, the polynomial in the A0 term describes the spine or the
skeleton of the PDE surface [3].

From the very definition of the spine, it can be seen as a powerful and intuitive
mechanism to manipulate the shape of surface once it is defined. There are several
ways by which one could utilize the spine to manipulate a given PDE geometry. One
such possibility is to re-parameterize the spine in terms of a polynomial.

For example, if we take the Biharmonic PDE, we can express the cubic polyno-
mial describing the A0 term as a Hermite curve of the form

H(u) = B1(u)p0 + B2(u)p1 + B3(u)v0 + B4(u)v1, (5.4)

where the Bi are the Hermite basis functions, p0,p1 and v0,v1 define the position
and the speed of the Hermite curve at u = 0 and u = 1, respectively. By comparing
the Hermite curve given in Eq. (5.4) with the cubic for the spine given by the A0

term, the terms a00, a01, a02 and a03 can be related to the position vectors and their
derivatives at the end points of the spine as

a00 = p0, (5.5)

a01 = 3p1 − v1 − 3v0, (5.6)

a02 = v1 + 2v0 − 2p1, (5.7)

a02 = v0. (5.8)

Since the A0 term is an integral part of the solution that generates the surface shape,
any change in the shape of the spine will, of course, result in a change in the shape
of the surface. A useful mechanism to change the shape of the spine would be to
manipulate its position and the derivative at the two end points. Therefore, the posi-
tion vectors and their derivatives at the end points of the spine can be used as shape
parameters to manipulate the shape.

Another way of manipulating the shape is to consider the condiments of the poly-
nomial A0, e.g., for the general elliptic PDE, one can imagine the vector constants
a00, a01, a02, . . . , a2N−1, as a set of design parameters whose values can be interac-
tively changed.

Figure 5.12(a) shows the spine of corresponding to the PDE surface patch shown
in Fig. 5.12(b). Figure 5.13(b) shows a modified shape using the spine, whereby
treating it as a cubic spline curve and then manipulating its control points. The final
shape of the spine corresponding to this modified geometry is shown in Fig. 5.12(a).

5.4 Conclusions 59

Fig. 5.12 Spine of PDE
geometry. (a) The PDE spine.
(b) The PDE geometry

Fig. 5.13 Spine based
geometry manipulation.
(a) The interactively
manipulated spine from that
shown in Fig. 5.12(a). (b) The
resulting PDE geometry

5.4 Conclusions

In this chapter, we have discussed practical techniques through which the user is
able to carry out simple surface manipulation interactively in real time. Boundary
conditions for the chosen PDE can be defined in terms of space curves whose shape
then defines the shape of the resulting surface. Another useful interactive tool is the
use of the spine of a PDE surface which also enables the surface to be manipulated in
an intuitive fashion. Owing to the closed-form nature of the solution, its calculation
and recalculation is computationally very efficient, i.e. the surface change produced
by the alteration of any boundary conditions by the user is very rapid. This enhances
real time interactive manipulation of the geometry of complex shapes.

60 5 Interactive Design

References

1. Blum H (1976) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W
(ed) Models for perception of speech and visual form. MIT Press, Cambridge, pp 362–381

2. Ugail H (2003) On the spine of a PDE surface. In: Wilson MJ, Martin RR (eds) Mathematics
of Surfaces X. Springer, Berlin, pp 366–376

3. Ugail H (2004) Spine based shape parameterisation for PDE surfaces. Computing 72:195–206.
doi:10.1007/s00607-003-0057-8

4. Ugail H, Bloor MI, Wilson MJ (1998) On interactive design using the PDE method. In: Mathe-
matical methods for curves and surfaces II. Vanderbilt University Press, Nashville, pp 493–500.
ISBN:0-8265-1315-8

5. Woodward CD (1987) Blends in geometric modelling. In: Martin RR (ed) Mathematical meth-
ods of surfaces II. Oxford University Press, London, pp 255–297

http://dx.doi.org/10.1007/s00607-003-0057-8

Chapter 6
Parametric Design

Abstract This chapter provides details of how PDE based geometries can be
efficiently parameterized. The geometry generated using PDEs has an efficient
parametrization associated with it. That is, PDE based geometries are first of all
characterized by boundary conditions. Furthermore, one can change the geometry
easily by means of changing a small set of parameters.

6.1 Design Parameters via the Boundary Curves

In the previous chapter, we saw how an initial surface shape can be defined through
boundary curves and then globally manipulated interactively. Here we show how the
shape can be further manipulated through design parameters, in particular design
parameters that can be introduced on the boundary curves [1, 2, 5, 7].

The basic idea here is to create the boundary curves by defining them in terms
of cubic B-splines or using standard analytic descriptions such as circles and el-
lipses. Thus, by solving the PDE, an initial shape is created which may be an initial
approximation to what the user intends to create. In order to facilitate interactive
manipulation, a parametrization of the boundary curves can be introduced. Further-
more, the parameters themselves have an obvious ‘physical’ interpretation and the
surface responds in an intuitive manner to the change in the values of these param-
eters.

Consider the curve shown in Fig. 6.1. Now the points marked X1 and X2 can be
chosen interactively on the curve. The position of the point X1 in R3, the angle θ

the line X1X2 makes with respect to a given direction and the Euclidean distance
s between the points X1 and X2 define three parameters which we can refer to as
the ‘position parameter’, the ‘angling parameter’ θ and the ‘scaling parameter’ s,
respectively. The roles of these parameters are as their names suggest: the position
parameter allows the position of the entire curve to be changed in R3 by ‘dragging’
the point X1; the angling parameter θ allows the curve to be rotated about a given
direction through the point X1, and the scaling parameter s allows a given curve to
be resized.

Note that the above described procedures can be carried out via simple geometric
transformations. In the case of changing the position parameter, this is carried out by
translating the point X1 in R3. The associated curve is allowed to follow the point,

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_6, © Springer-Verlag London Limited 2011

61

http://dx.doi.org/10.1007/978-0-85729-784-6_6

62 6 Parametric Design

Fig. 6.1 Illustration of
locally defined parameters
from the boundary curves

thus translating the whole curve with respect to the value of the parameter X1. The
translations can be carried out in the xy, xz and yz planes of R3 interactively. In
the case of changing the angling parameter θ , a plane (xy, xz or yz) is chosen in
which the axis of rotation is to lie. One can then define a line through the point X1
in this plane. The curve is then rotated about this chosen line through the point X1
on the chosen plane. Finally, for the scaling parameter, the point X2 on the curve is
chosen and, in order to change the size of the curve, the Euclidean distance between
the points X1 and X2 is varied.

Thus, by choosing the above model for the geometric transformation of the
boundary curves, a set of design parameters are defined influencing the shape of
the curve which is easy for the user to appreciate. One can see that despite having
kept the geometric transformations as simple as possible, in order to minimize the
number of design parameters, the user is able to create a wide range of modifications
to the initial curve shape.

Described below is how the above defined parameters can be varied interactively
in order to bring about changes in the shape of the surface.

Since the positional boundary conditions define the edge of the surface patch, any
change in these conditions directly affects the shape of the surface. Figure 6.2 and
Fig. 6.3 show a sequence of surfaces which illustrates the influence of the positional
boundary conditions on the shape of the surface where the boundary conditions are
controlled by the choice of values for the parameters X1, θ and s. Here we show how
the interactive design of a swirl port [4] for a diesel internal combustion engine can
be carried out, starting from an approximation to the desired surface shape shown
in Fig. 6.2(b). This initial surface is somewhat ‘distant’ from the desired final shape
of the surface and has been chosen to illustrate the effect of the shape parameters
introduced above.

Consider the surface shape in Fig. 6.2(b), which corresponds to the initial bound-
ary curves shown in Fig. 6.2(a). The surface is then modified by changing the bound-
ary conditions, and Fig. 6.2(d) shows the surface resulting from the modified bound-
ary curves which are shown in Fig. 6.2(c). This change to the surface is brought
about by changing the value of the position parameter for the curve marked P2, so
that between Fig. 6.2(a) and Fig. 6.2(c) the curve P2 has been translated in R3.

The surface is changed again, and Fig. 6.3(b) shows the surface resulting from
the modified boundary curves shown in Fig. 6.3(a). The change to the surface shown
in Fig. 6.3(b) is brought about by changing the value of the angling parameter for
the curve marked P2 shown in Fig. 6.2(c).

Figure 6.3(d) shows the final shape of the swirl port. The corresponding boundary
curves are shown in Fig. 6.2(c). The change to the surface shown in Fig. 6.2(b)

6.2 Local Parameters on the Boundary Curves 63

Fig. 6.2 The influence of
positional boundary
conditions on the shape of the
surface

results from increasing the value of the scaling parameter s for the curve marked P2

shown in Fig. 6.2(a).

6.2 Local Parameters on the Boundary Curves

As shown in the previous section, the boundary conditions are very powerful in
controlling the internal shape of the surface. For this reason, modification of the
boundary curves themselves at a local level may often be required. Described below
is a technique which has been implemented to achieve this, using a locally defined
parametrization.

Next, the local modification of a B-spline curve is considered, although in prin-
ciple it can be any sort of parametric curve. Consider the curve shown in Fig. 6.4(a).
Two points X1 and X2 on the curve are chosen; between these points the user seeks
to manipulate the curve. Since the curve is arc-length parameterized in terms of v,
the points X1 and X2 on this parametrization correspond to, say, v1 and v2 with
v1 ≤ v2. We define a new curve Cnew(v) such that

Cnew(v) =
{

C1(v) if v ≤ v1, v ≥ v2,

C2(v) if v1 < v < v2,
(6.1)

64 6 Parametric Design

Fig. 6.3 The influence of
positional boundary
conditions on the shape of the
surface

Fig. 6.4 Illustration of how
the boundary curves can be
manipulated locally

where C1(v) is the original curve and C2(v) is a B-spline perturbation curve given
by

C2(v) =
∑

i

P iBi(v), (6.2)

where Bi is a cubic B-spline and P i are the control points. The knot values of the
B-spline are chosen so as to confine the effects of manipulation to a given region
of the original curve. In particular, the point X3, which is initially on the curve,
corresponds to a control point of the B-spline curve, and it is interactively chosen
between X1 and X2. To ensure that the curve C2(v) passes through the end points
of the curve C1(v) and at the same time maintains the continuity between the two
curves, the following procedure has been employed.

6.3 The Effect of the Smoothing Parameter a 65

Fig. 6.5 Influence of local
manipulation of the derivative
curve on the shape of the
surface

Assuming that the points on the original curve are labeled as vi , with increasing
i as the points on the curve are counted from X1 to X2, we can define the point
X1 to be vm for some m. Similarly, X2 is defined to be vn with n > m. The points
vn−1 and vm+1 are now defined as multiple control points (vn−1 and vm+1 each as
three control points) of the B-spline curve. This ensures that the curve C2(v) passes
through the points vn−1 and vm+1. This also ensures that the slopes at the end points
of the curve C2(v) are the vectors (vn−1 − vn) and (vm+1 − vm).

Since the aim of introducing the curve C2(v) is to enable local manipulation, the
point X3, which the user is able to choose between X1 and X2 interactively, is the
only point which is allowed to be manipulated. Thus, X3 is allowed to be translated
in the plane defined by the initial choice of points X1, X2 and X3. Figure 6.4(b)
shows the resulting curve after a local manipulation has been applied to the curve
shown in Fig. 6.4(a).

The above described procedure has also been employed to create curves in R3

from planar curves. In order to do this, the point X3 once chosen can be translated
along the line through X3 which is perpendicular to the plane defined by X1, X2,
and X3.

Thus, parameters X1, X2 and X3, which are chosen interactively on the curve by
input from the mouse, can be varied to change the shape of the curve locally. This
local modification in the curve readily gives rise to a complex modification of the
surface.

Figure 6.5(b) shows a cup-like surface to which a ‘lip’ has been added in which
the derivative curve at u = 1 has been locally manipulated in the fashion described
above. The initial surface patch is shown in Fig. 6.5(a).

6.3 The Effect of the Smoothing Parameter a

The parameter a given in the general Biharmonic equation (4.35) also influences
the overall shape of the surface. This parameter controls the relative smoothing of
the dependent variables between the u and v directions. For large a, changes in the
u direction occur over a relatively short length scale, i.e. it is 1/a times the length
scale in the v direction over which similar changes take place. Thus, by adjusting
the value of a interactively, the user is capable of controlling the length scale over
which the boundary conditions influence the interior of the surface. For a periodic
surface, the higher the value of a, the more ‘waist’ the surface acquires. Figure 6.6

66 6 Parametric Design

Table 6.1 Values of a used
to create the geometries
shown in Fig. 6.6

Fig. Value of a

6.6(a) 1.5000

6.6(b) 5.7500

6.6(c) 8.1800

shows the sequence of surfaces resulting in changes to the value of a, for a cup-like
surface in the case of the Biharmonic equation. The particular values of a chosen
are shown in Table 6.1.

Figure 6.6 shows a series of geometry created using various values for the pa-
rameter a. Note that as far as this work is concerned, the parameter a is chosen to
be independent of u and v. In certain specialized cases, it may be thought desirable
for this parameter to be made dependent on u,v so that more control over the shape
of the surface can be obtained [3].

6.4 The Effect of v Parametrization

The points on the boundary curves where v = 0 are important in defining the overall
shape of the surface. As described earlier, during the initial design process, the po-
sition of this point on each of the boundary curves can be chosen interactively. The
effect of changing the v = 0 point from its original position to another position on a
given curve is to produce a twist in the parameter lines.

Consider Fig. 6.7(a) in which the point v = 0 at u = 1 is marked. Figure 6.7(b)
shows the result of changing the position of this point at u = 1 on the boundary
curves corresponding to surface shown in Fig. 6.7(a).

Fig. 6.6 Interactive shape manipulation using the parameter a

6.5 Summary 67

Fig. 6.7 The effect of v

parametrization

6.4.1 Time-Dependent Parametrization

The use of time as a parameter (especially on the boundary conditions) can be used
as a design parameter. To describe this, we show how shape morphing can be carried
out by means of introducing a time parameter to the boundary conditions.

Let Bs = {S1,S2,S3,S4} be the set of boundary conditions specified for the Ss
and Bt = {T1,T2,T3,T4} be the set of boundary conditions representing St. Now,
the ith intermediate set of boundary conditions Bi = {I1, I2, I3, I4} can be achieved
by

I1 = (1 − ε)S1 + εT1,

I2 = (1 − ε)S2 + εT2,

I3 = (1 − ε)S3 + εT3,

I4 = (1 − ε)S4 + εT4,

(6.3)

where

ε = γ i

m
(6.4)

with γ ≥ 0 and m being the total number of intermediate surfaces to be created.
Figure 6.8(a) corresponds to the water glass which is transformed into Fig. 6.8(b)

by changing its boundary conditions when i = 1. Then, Fig. 6.8(b) evolves into
Fig. 6.8(c) and successively to Fig. 6.8(k) which represents a wine glass.

6.5 Summary

This chapter has highlighted the aspects of parametric design using PDEs. It has
been shown that PDE based geometric design represents a powerful means for pa-
rameterizing complex geometries due to its inherent boundary-value approach to

68 6 Parametric Design

Fig. 6.8 Sequence showing how the source surface Ss has been morphed into the target one St by
using a gradual change in the boundary conditions and finding each of the intermediate surfaces

surface generation. Then a number of different types of parametrization have been
discussed. In particular, shape parameters introduced to the boundary curves as well
as time-dependent parameterizations have been considered.

References

1. Athan M, Ugail H, Gonzalez G (2009) Parametric design of aircraft geometry using partial
differential equations. Adv Eng Softw 40:479–486. doi:10.1016/j.advengsoft.2008.08.001

2. Brown JM (1992) The design and properties of surfaces generated using partial differential
equations. PhD thesis, Department of Applied Mathematical Studies, University of Leeds, UK

3. Cheng SY (1992) Blending between parametric surfaces using partial differential equations.
PhD thesis, Department of Applied Mathematical Studies, University of Leeds, UK

4. Dekanski CW, Bloor MIG, Wilson MJ (1996) A parametric model of a two-stroke en-
gine for design and analysis. Comput Methods Appl Mech Eng 137:411–425. doi:10.1016/
S0045-7825(96)01103-6

http://dx.doi.org/10.1016/j.advengsoft.2008.08.001
http://dx.doi.org/10.1016/S0045-7825(96)01103-6
http://dx.doi.org/10.1016/S0045-7825(96)01103-6

References 69

5. Kubeisa S, Ugail H, Wilson M (2004) Interactive design using higher order PDEs. Vis Comput
20(10):682–693. doi:10.1007/s00371-004-0261-3

6. Ugail H (2004) Spine based shape parameterisation for PDE surfaces. Computing 72:195–206.
doi:10.1007/s00607-003-0057-8

7. Ugail H, Bloor MI, Wilson MJ (1999) Manipulation of PDE surfaces using an interactively de-
fined parameterisation. Comput Graph 23(4):525–534. doi:10.1016/S0097-8493(99)00071-0

8. Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE
method. ACM Trans Graph 18(2):195–212. doi:10.1145/318009.318078

http://dx.doi.org/10.1007/s00371-004-0261-3
http://dx.doi.org/10.1007/s00607-003-0057-8
http://dx.doi.org/10.1016/S0097-8493(99)00071-0
http://dx.doi.org/10.1145/318009.318078

Chapter 7
Functional Design

Abstract This chapter discusses how the PDE based approach to shape parametri-
zation when combined with a standard method for numerical optimization is capable
of setting up automatic design optimization problems allowing design for function
to be more practical. The chapter first introduces the methodologies for design op-
timization. Afterwards several examples of how design for function can be carried
out via PDE based shape parametrization along with optimization are discussed.

7.1 Introduction

In the previous two chapters, it was shown how it is possible to change the shape of
a parametric PDE surface by interactively changing the values of the previously de-
fined parameters. Thus, the user can search by eye, varying the parameters and view-
ing the resulting surface graphically, until the desired shape is achieved. However,
it is often necessary to obtain surfaces which possess some functional property. For
example, it may be necessary to search for a surface, among those available, which
encloses the largest volume, or which has a particular curvature distribution. To per-
form such tasks automatically, the surface generation routine needs to be combined
with a routine for analysis that evaluates the values of a function, usually termed the
objective function, that quantifies the property of interest, and with a further routine,
termed the optimization routine, which automatically searches for a minimum (or
maximum) of the objective function.

Generally, the optimization process requires a search to be made in the parame-
ter space in order to find the minimum value of the objective function. During the
process of optimization, most of the computational effort is usually spent on evalu-
ating the objective function rather than the optimization routine itself. Therefore, it
is desirable to use a design method which minimizes the number of design variables
and therefore requires as few function evaluations as possible [5].

7.2 Principles of Shape Optimization

The process involved in a standard shape optimization routine is to solve a con-
strained optimization problem in which an objective function f the design shape

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_7, © Springer-Verlag London Limited 2011

71

http://dx.doi.org/10.1007/978-0-85729-784-6_7

72 7 Functional Design

parameters and the chain of constraints are related. In the interest of illustrating
this, a very simple optimization example is explained. Assume that you are inter-
ested in the design of a liquid bottle whereby the container is cylindrical with radius
r and height h. Due to cost issues, you require to keep the total surface area of the
container fixed to 3π square meters. However, you need to maximize the volume of
the container in order to maximize the profit. This is clearly an optimization problem
in which the volume of the cylinder needs to be maximized subject to the constraint
stating that the area must remain constant. Let r and h denote the radius of such
a cylinder and let A and V represent the total surface area and volume of such a
cylinder, which are given by

A = 2πr2 + 2πrh

and

V = πr2h,

respectively.
The total surface area includes two circular sections comprising the top and the

base of the cylinder. Here the volume of the cylinder is the objective function, and
we will denote it by f . In this particular case, f is a function of both the radius
and the height of the cylinder. The constraint is naturally given by the restriction
imposed by limiting the area of material to be 3π square meters. This can be written
as

A = 3π = 2πr2 + 2πrh.

This relation can be exploited in order to find a relation between the two variables
defining the geometry of the cylinder r and h, leading to

h = 3

2r
− r.

The next step is to express the objective function f exclusively in terms of r , ob-
taining

f = 3

2
πr − πr3.

Once the objective function has been expressed in terms of one variable, one can
proceed to maximize the function. The traditional approach for either maximizing
or minimizing a function with respect to a given variable is to find its critical points
by differentiating it with respect to the variable to be optimized. Thus,

df

dr
= 3

2
π − 3πr2 = 0,

and the critical points are then

r = 1√
2

and r = −1√
2
.

Clearly, the critical point at r = −1√
2

is automatically discarded since there cannot be
circles of negative radii, and therefore, our interest will be focused on the second

7.3 Simulated Annealing 73

Table 7.1 Values assigned to
r and the respective value of
h for function f

r h f

1
4

35
4

35
64 π

1
3

25
6

25
54 π

0.5 5
2

5
8 π

2
3

19
12

19
27 π

1√
2

√
2 1√

2
π√

3
2

√
3

2
3
√

3
8 π

1.0 0.5 1
2 π

one at r = 1√
2

. Now, it is necessary to verify that such a critical point is indeed a
maximum. To that end, a number of mathematical criteria based on derivatives of
the objective function are available; however, the reader is referred to Table 7.1 to
verify that such a value is a maximum. This table presents different values for r ,
h and f , which by simple inspection demonstrates that the greatest volume is at
r = 1√

2
.

It is important to stress that the example above is simple, and a straightforward
analytic solution to the corresponding optimization problem is available. However,
this is not generally the case, and more complicated mathematical techniques have to
be employed. A number of numerical optimization techniques are readily available.
One such method is the so-called Simulated Annealing.

7.3 Simulated Annealing

Simulated annealing is based on an analogy between the simulation of the annealing
process in cooling solids and the problem of solving large combinatorial problems.
This analogy was first remarked upon in [7]. In condensed matter physics, annealing
denotes the physical process in which a solid, or liquid, is heated to high temper-
atures and then cooled slowly in order to remove strain crystal imperfections. At
sufficiently high temperatures, the particles of the melted solid are free to move ran-
domly in the liquid phase. If the temperature is reduced sufficiently slowly, such that
the thermal mobility is reduced gradually, the particles tend to arrange themselves
to form a crystalline structure of minimum energy. An important property of an-
nealing is that the gradual reduction in temperature allows the solid to reach thermal
equilibrium at each temperature value T .

The probability that a solid, in thermal equilibrium, is in a state of energy E is
given by the Boltzmann probability distribution function

P(E) = 1

Z(T)
e− E

kT , (7.1)

where Z(T) is a normalization factor, known as the partition function, which de-
pends on the temperature T , and k is a constant of nature, known as Boltzmann’s

74 7 Functional Design

constant, which relates temperature to energy. A detailed discussion of this can be
found in [8]. According to Eq. (7.1), as the temperature decreases, the Boltzmann
distribution concentrates on states with lowest energy, and finally, when the temper-
ature approaches zero, only the minimum energy states have a non-zero probability
occurrence.

However, if the cooling is too rapid, the system is unable to reach thermal equi-
librium at each temperature value. This can result in defects being ‘frozen’ into the
solid, yielding a polycrystalline structure of considerably higher energy when com-
pared to pure crystalline structure. Furthermore, in a process known in condensed
matter physics as quenching, if the temperature is lowered instantaneously, it results
in defects being frozen into the solid, resulting in a metastable structure.

An algorithm for simulated annealing was first introduced in [9]. In that algo-
rithm, the authors simulated the evolution of a solid into a thermal equilibrium at
a given temperature. The algorithm is based on the Monte Carlo method, which is
used to estimate averages or integrals by means of random sampling techniques.
The algorithm is used to generate a sequence of states of the solid in the following
way.

In each step of the algorithm, a particle was given a small randomly generated
perturbation and the resulting change in energy �E of the system was calculated.
If the perturbation results in a lower energy, i.e. �E < 0, the new state is automati-
cally accepted. However, if the perturbation results in a higher energy, i.e. �E ≥ 0,
then the probability of accepting the new state is given by the Boltzmann’s factor

P = e
−�E
kT . In order to decide whether to accept the proposed new state, a random

number is generated in the interval (0,1), and if P is greater than this random num-
ber, the new state is accepted. This acceptance rule for a new state is referred to
as the Metropolis criterion, and the general scheme of always accepting a lower
state and sometimes accepting a higher energy state is known as the Metropolis al-
gorithm. After a large number of perturbations, using the Metropolis criterion, the
probability distribution approaches that of the Boltzmann distribution, i.e. thermal
equilibrium.

The Metropolis algorithm was generalized by [7] by the introduction of an
‘annealing schedule’ in order to solve arbitrary combinatorial minimization prob-
lems. This algorithm is known as simulated annealing, and is really a sequence of
Metropolis algorithms performed at a sequence of decreasing temperature values,
i.e. at each temperature value the Metropolis algorithm is performed until thermal
equilibrium is achieved, and, provided that the annealing schedule is sufficiently
slow, simulated annealing converges to a global minimum corresponding to the min-
imum energy state of the system. It is the controlled acceptance of the perturbations
which enables simulated annealing to jump from a local minimum into a potentially
better, and hopefully global, minimum.

Simulated annealing was originally devised for the solution of combinatorial op-
timization problems which involve a discrete, and often very large, configuration
space. The algorithm has been applied to a variety of problems, including the trav-
eling salesman problem and computer circuit design. The basic idea of simulated
annealing is also applicable to problems with continuous search spaces, e.g. the

7.4 Application of Simulated Annealing 75

non-linear least squares fitting problem [1]. Advantages of simulated annealing over
local minimization methods include its general applicability, flexibility, robustness,
and ease of implementation. A disadvantage of the simulated annealing method is
that it involves more function evaluations than gradient-based methods.

7.4 Application of Simulated Annealing to Continuous
Optimization Problems

Described in this section is how simulated annealing has been implemented to solve
the optimization problem. In particular, it is shown how the algorithm is formulated
and how the automatic variation of the geometry is carried out.

7.4.1 Simulated Annealing Algorithm

The algorithm used for this work is based on the Metropolis algorithm and is used
to generate a sequence of configurations of the search space. We let configurations
play the role of energy states of a solid, while the objective function f and a control
parameter c play the role of energy and temperature, respectively. The algorithm
then evaluates a sequence of Metropolis algorithms at a sequence of decreasing val-
ues of the control parameter. A generation mechanism is then defined, so that, given
a configuration i, another configuration j can be obtained by choosing at random
an element from the neighborhood of i, the latter corresponding to the small per-
turbation in the Metropolis algorithm. Let �fij = f (j) − f (i), then the probability
for configuration j to be the next configuration in the sequence is given by 1, if

�fij ≤ 0 and by e− �fij
c , if �fij > 0 (the Metropolis Criterion). Thus, there is a non-

zero probability of continuing with a configuration with higher cost than the current
configuration. This process is continued until equilibrium is reached, i.e. until the
probability distribution of the configurations approach the Boltzmann distribution,
now given by

P(configuration = i) = 1

Z(c)
e− f (i)

c , (7.2)

where Z(c) is a normalization constant depending on the control parameter c.
The control parameter is then lowered in steps, with the system being allowed to

approach equilibrium for each step by generating a sequence of configurations. The
algorithm is terminated for some small value of c. The final ‘frozen’ configuration
is then taken as the solution of the problem. Note that the acceptance criterion is
implemented by drawing random numbers from a uniform distribution on (0,1) and

comparing these with e− �fij
c as shown below.

The rate at which the system cools can be controlled by introducing an appro-
priate annealing schedule. This can effectively be done by introducing a scheme to

76 7 Functional Design

lower the control parameter. Here an exponential annealing schedule is chosen and
is given by

cm = c0e
(s−1)m, 0 < s < 1, (7.3)

where cm is the temperature at any given step m and c0 is the initial temperature.
The pseudo-code for the algorithm is given below. Note that the algorithm out-

lines the setup for one design parameter, and the generalization of the algorithm to
n design parameters can be carried out in an obvious way.

Algorithm Used for Simulated Annealing
Initialize();
m = 0; // m introduces an annealing schedule
while stop criterion = FALSE
{

while equilibrium is approached sufficiently closely = FALSE
{
PERTURB(config. i → config. j , �fij); // generates new configurations
if { �fij ≤ 0 then accept }
else if { exp(−�fij /c) > random(0,1) then accept }
if accept then UPDATE(config. j);
}
cm+1 = L(cm); // calculate a lower value for c

m = m + 1; // define a new equilibrium state
}
system is ‘frozen’;

7.4.2 Constraints

Since simulated annealing is insensitive to discontinuities in the objective function,
it is relatively simple to impose constraints on the chosen objective function. The
simplest way of doing this is to assign a large positive number to the objective
function f if a given parameter constraint is violated, in other words, by introducing
a crude penalty function. A sufficiently large penalty function added to the objective
function will usually ensure that trespassing over the bounds is avoided.

7.5 Further Examples

This section illustrates how practical design for function can be carried out using a
PDE formulation. For this purpose, several examples are discussed.

As a simple example, consider the shape shown in Fig. 7.1(b). The corresponding
boundary curves are shown in Fig. 7.1(a). Here the aim was to obtain a shape for the

7.5 Further Examples 77

Fig. 7.1 Initial boundary
curves and the corresponding
PDE surface to be optimized
for curvature

surface which has the minimum
∫
(κ2

1 + κ2
2) ds, where κ1 and κ2 are the principal

curvatures, which can be obtained from the well known formulae

G = κ1κ2, (7.4)

H = κ1 + κ2

2
, (7.5)

where G and H are known as the Gaussian and mean curvature of the surface,
respectively, and are expressed in terms of the first and second fundamental forms
of the surface [10].

Here the parametrization discussed in previous chapters is introduced on both
the derivative curves d1 and d2. The parametrizations are defined using two points
(in this case, at v = 0 and v = π) interactively chosen on the curves. For conve-
nience, the parametrizations on the boundary curves are denoted using the notation
ckPi

(k = 1,2), (i = x, y, z). Here c defines the curve, with the letter p being used
to denote the position curves and the letter d being used to denote the derivative
curves. The index k ranges from 1.0 to 2.0 denoting respectively the u = 0 and
u = 1 boundary edges of the surface. The letter P denotes the type of parameter,
T stands for a translation, R for a rotation and D for a dilation. Finally, the letter i

denotes the coordinate directions relevant to a particular type of parameter.
For the example considered here, translation, rotation and dilation parameters

are defined for both the derivative curves d1 and d2 with the position curves kept
fixed. In particular, we have translations, dkTi

(k = 1,2), (i = x, y, z), rotations,
dkRi

(k = 1,2), (i = x, y, z), and dilations, dkDi
(k = 1,2), (i = x, y, z). Further-

more, we also consider the variation of the smoothing parameter a.
Table 7.2 shows the initial values along with the parameter ranges are consid-

ered. These values were chosen in such a way that their variations lead to a sensible
range of shapes. To reduce the cost of optimization, it is usually necessary to limit
the search regions of the parameter space in which the shapes obtained are sensi-
ble, though not necessarily optimal. In practice, a designer makes this sort of design
judgment when considering the possible design solutions. In other words, the de-
signer does not waste time looking for alternative designs which would obviously
not possess the required functionality.

The above parameters are given to the optimization routine which can be inte-
grated with the software which generates a PDE surface to the Biharmonic equation

78 7 Functional Design

Table 7.2 Initial values and ranges for the parameters considered in optimizing a surface for
curvature

Parameter Initial value Minimum value Maximum value

dkTi
(k = 1,2), (i = x, z) 0.0 −1.2 1.2

d1Ty 0.0 0.0 1.2

d2Ty 0.0 −1.2 0.0

dkRi (k = 1,2), (i = x, y, z) 0.0 −0.8 0.8

dkDi
(k = 1,2), (i = x, y, z) 1.0 0.01 3.0

a 0.5 0.01 9.0

Fig. 7.2 Intermediate shapes
due to the variation of the
parameters during
optimization

with the smoothing parameter a discussed in Chap. 4. Thus, the geometry is var-
ied for each iteration of the simulated annealing algorithm and the corresponding
surface points, along with the objective function, are calculated. Figure 7.2 shows
some of the intermediate shapes which have been produced during the process of
optimization.

Table 7.3 shows the final values of the parameters. Note that the table only shows
the values for those parameters whose values changed significantly during the opti-
mization. Figure 7.3 shows the optimal shape of the surface. This shape is obviously
a reasonable shape as it has relatively small curvature.

7.5 Further Examples 79

Table 7.3 Final values of the
parameters corresponding to
the optimal shape for optimal
design for curvature

Parameter Optimal value

d1Dx 0.909

d1Dy 0.818

d1Dz 0.908

d2Dx 1.022

d2Dy 1.015

d2Dz 1.018

a 0.934

Fig. 7.3 Optimal design for
curvature

7.5.1 Design Optimization of a Thin-Walled Structure

The aim here is to design a container possessing the minimum amount of material
subject to required strength. Moreover, for the purpose of illustration, the problem
of stacking the containers on top of each other for the purpose of transportation and
display on supermarket shelves is considered. Consider a container at the bottom of
a stack, which experiences a stress (due to the weight of the rest of the containers
in the stack) and hence becomes slightly deformed. It is the excessive shear stress
which can cause most damage to the walls of the container. Thus, a measure for
the required strength of the container can be computed by calculating the maximum
shear stress [6] within the container. This is done by means of thin-shell finite el-
ement analysis [3] where a force is applied around the rim of the container, which
translates to the weight of the rest of the containers in the stack. It is also assumed
that the base of the container is fixed.

Figure 7.4 shows the shape of a yoghurt container created using two surface
patches (one for the bowl and the other for the flat flange). This is a basic shape
which can be used to demonstrate the techniques of shape optimization.

The ridges at the base of the container are created so as to obtain a more realistic
shape for the container as such features are often incorporated within food contain-

80 7 Functional Design

Fig. 7.4 Shape of a yoghurt
container: an example of a
composite shape built from
multiple patches

Fig. 7.5 Cubic B-spline
curve corresponding
derivative condition enabling
to create the ridges at the base
of the container

ers. Here these ridges are created by means of the corresponding derivative curve
which in this case is defined by means of a cubic B-spline and takes the form

d1(v) =
∑

i

ciBi(v), (7.6)

where Bi is a cubic B-spline and ci are the control points.
The control points, ci , of the spline are chosen so as to initially lie on the curve

which determines the value of dilation parameter. The number of control points
chosen determines the number of ridges on the container. In order to define the
amplitude of the ridges, one can translate the control points, normal to the curve,
within a confined xy planar region. Thus, the amount of translation of the control
points normal to the curve determines the prominence of the ridges. The translation
of the control points introduces an extra shape parameter which will be referred
as cT . Figure 7.5 shows the B-spline curve illustrating the parameter cT .

Here, for convenience, the parametrization on the boundary curves is adopted
to suit the optimization problem using the following notation. For a given bound-
ary curve, this parametrization is denoted as ckPi

(k = 1,2), (i = x, y, z). Here c

indicates the type of curve, with the letter p denoting the position curves and the
letter d denoting the derivative curves. The index k ranges from 1 to 2 correspond-
ing respectively to the u = 0 and u = 1 boundary edges of the surface. The letter P

denotes the type of parameter: T stands for a translation, R for a rotation and D for
a dilation. Finally, the index i denotes the coordinate directions relevant to a partic-
ular type of the parameter. Adjustments to the values of these parameters along with
the value of a in the Biharmonic PDE can be used to create and manipulate complex
geometries.

7.5 Further Examples 81

Table 7.4 Parameter values for the yoghurt container (optimization for strength)

Parameter Minimum Maximum Initial Optimal

d1Ty −0.400 −0.001 −0.400 −0.134

d1Dx 0.100 0.800 0.450 0.300

d1Dy 0.100 0.800 0.450 0.298

d2Ty 0.001 0.400 0.400 0.401

d2Dx 0.100 0.800 0.450 0.370

d2Dy 0.100 0.800 0.450 0.378

a 1.000 7.000 1.000 1.075

cT −0.300 0.300 0.200 0.001

As mentioned above, the design objective here is the minimization of the mass
of the container subject to a given maximum shear stress. Hence the process of op-
timization requires the calculation of the maximum shear stress that occurs in the
object for every design to be analyzed. Using the principal components of shear
stresses, obtained by performing the finite element analysis of the structure, the
maximum shear stress σ

p
max occurring on any plane through a point p is first calcu-

lated. Therefore, the measure for the strength of the container is the maximum shear
stress occurring in the whole structure, i.e.

f = max︸︷︷︸
(all points)

{
σ

p
max

}
. (7.7)

Since the determination of the internal shape of the container is of interest here,
the only changes in the parameters introduced here are those on the derivative
boundary curves of the bowl part of the container. In particular, the translation in
y direction and dilations in the xy plane of these two curves within defined limits
are considered in order obtain a favorable range of shapes.

With this formulation, the design parameters and their initial values for the op-
timization of the yoghurt container are shown in Table 7.4. Note that the table also
shows the chosen range for each parameter. The range specified for each design pa-
rameter (by means of choosing a maximum and a minimum) allows the parameters
to be varied within the specified ranges, enabling alternative shapes to be created
within the design space automatically. These ranges are chosen to ensure that the
geometry of shapes produced within the design space is sensible. The container was
loaded so as a tension of 15 N m−1 (equivalent to the weight of about 30 yoghurt
containers) was applied to the top seal of the container. It is also assumed that the
base u = 0 of the container is fixed. The required strength of the container is spec-
ified so that the level of stress occurring within the loaded structure less than 30%
of the yield stress. The design space was further restricted by choosing a volume
constraint for the container. For this particular example, a fixed volume of 150 ml
was chosen.

Once the geometry is parameterized, the design parameters and their ranges
along with the value for the required volume of the container are fed into the opti-

82 7 Functional Design

Fig. 7.6 Optimal design for
strength of the yoghurt
container

mization routine. This routine then automatically searches the design space in order
to find the design with the lowest possible value of the chosen merit function.

The values of the parameters obtained for the optimal design are shown in Ta-
ble 7.4, and the optimal shape is shown in Fig. 7.6. The resulting optimal shape in
this particular case yields a relative reduction in mass of around 11%.

7.5.2 Prediction of Stable Structures of Vesicles Occurring in
Biological Organisms

This example discusses how the method of shape parametrization based on the PDE
formulation can be used to predict the stable structures of vesicles commonly found
in biological organisms. The vesicles considered here are essentially lipid molecules
typically consisting of a polar hydrophilic head and a hydrophobic tail consisting of
hydrocarbon chains. Such amphiphilic molecules when placed in an aqueous solu-
tion can spontaneously aggregate to form encapsulating bags. Despite the relatively
simple structure of their walls, these vesicles can adopt a surprisingly wide variety
of different shapes and even topologies [4]. It is noteworthy that various shapes and
topologies are adopted by these vesicles during the aggregation so as to reduce the
surface energy of the membrane [2].

Therefore, the aim here is to predict the stable shapes of the vesicles by means
of automatic optimization subject to a given set of physical conditions with the
merit function being the surface energy of the membrane. Various models for pre-
dicting the surface energy of a membrane can be found in the literature. For the
work described here, a widely accepted model for predicting the surface energy of
a membrane due to Canham [2] that is based upon the surface curvature (SC) of the
membrane is used. The SC model is based on the fact that the local energy density
of the membrane is proportional to the sum of the squares of the principal curvatures
and a quantity known as the spontaneous curvature to reflect the possible asymmet-
ric configuration of the membrane. According to this model, the shape adopted by a
vesicle is such as to locally minimize the energy functional subject to the constraints
of constant area and volume. Hence, the surface energy E of a vesicle is given by a
surface integral of the form

E(S) =
∫

(C1 + C2 − C0) dA +
∫

(C1C2) dA, (7.8)

7.5 Further Examples 83

Fig. 7.7 Initial geometry of
the vesicle shape

where C1 and C2 are the principal curvatures, C0 is the spontaneous curvature for a
given surface shape S with dA being an element of the surface. Note that if we use
the analytic solution of the PDE, the surface is given in closed form, allowing the
computation of principal curvatures and the Jacobean relating an area element dA

in the (u, v) parameter space.
The approach to predicting vesicle shapes adopted here is similar to that de-

scribed in the previous example where a parametric representation of the surface
corresponding to the shape of a yoghurt container is created. The geometry of the
vesicle shape is represented using two PDE surface patches joined together with a
common boundary as shown in Fig. 7.7. Once again the design parameters are iden-
tified at the boundary curves with their starting values and ranges directly fed to the
optimization routine. The optimization is carried out subject to the constraints of
constant surface area and enclosed volume. Due to the scale invariance of the SC
model, the vesicle shapes depend on two dimensionless parameters known as the
reduced volume ν and the reduced spontaneous curvature c0 given by

ν = V
/(

4π

3
R3

0

)
(7.9)

and

c0 = C0R0, (7.10)

where R0 = √
(4πA) where V and A are the volume and surface area of the vesicle,

respectively.
With these settings, the optimization is started at some initially chosen point in

the parameter space. The routine allows detecting the local minimum of the surface
energy for a given value of the reduced spontaneous curvature as a function of the
reduced volume. To achieve this, a starting value of reduced spontaneous curvature
c0 and a starting set of values for the design parameters are chosen. This allows
finding a stationary state for a given value of the reduced volume ν. The optimization
is repeated for a new value of ν using the previously found stationary state as a

84 7 Functional Design

Fig. 7.8 Sample shapes
vesicles obtained during
optimization for c0 = 0.01,
(a) ν = 0.581, (b) ν = 0.789,
(c) ν = 0.865

starting point for the new optimization. Thus, for a given value of c0 starting from
ν = 0.5 the optimization repeated until ν = 1.0 has been reached.

Figures 7.8 and 7.9 show the results of sample vesicle shapes of different volumes
obtained for c0 = 0 and c0 = 3.0, respectively. These results can be validated against
the various test cases reported in [4].

7.6 Conclusions

The purpose of this chapter was to present a methodology for design for function
based on automatic design optimization using PDE formulation, enabling efficient
shape definition and shape parametrization. In this chapter, we have seen several ex-
amples which demonstrate how the methodology can be used for automatic design
optimization. These examples clearly demonstrate that the proposed approach to
shape parametrization when combined with a standard method for numerical opti-

Fig. 7.9 Sample shapes vesicles obtained during optimization for c0 = 3.0, (a) ν = 0.812,
(b) ν = 0.689, (c) ν = 0.711, (d) ν = 0.762

References 85

mization is capable of setting up automatic design optimization problems, allowing
practical design for function to be feasible.

References

1. Bates DM, Watts DG (1988) Nonlinear regression and its applications. Wiley, New York
2. Canham PB (1970) The minimum energy of bending as a possible explanation of the bi-

concave shape of the human red blood cell. J Theor Biol 26:61–81. doi:10.1016/S0022-
5193(70)80032-7

3. Chapelle D, Bathe K (2010) The finite element analysis of shells—fundamentals. Springer,
Berlin

4. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York
5. Greig DM (1980) Optimisation. Longman, London
6. Hinton E, Owen DRJ (1984) Finite element software for plates and shells. Pineridge Press,

Swansea
7. Kirkpatrick S, Gellat D Jr, Vecchi MP (1983) Optimisation by simulated annealing. Science

220(4598):671–680
8. Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications mathematics

and its applications. Reidel, Holland
9. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of

state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. doi:10.1063/
1.1699114

10. Struik D (1961) Lectures on classical differential geometry. Addison-Wesley, Reading

http://dx.doi.org/10.1016/S0022-5193(70)80032-7
http://dx.doi.org/10.1016/S0022-5193(70)80032-7
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114

Chapter 8
Other Applications

Abstract This chapter presents a number of other application areas (which have
not been discussed in previous chapters) which can benefit from using PDEs for
geometric design. Particularly, in this chapter we show how PDEs can be effectively
used for animation, data representation and compression. Furthermore, we discuss
an emerging area of research where PDE based geometric design is being related to
traditional spline based techniques.

8.1 Use of PDEs for Generating Time Dependent Geometry and
Animation

In this section, we discuss how PDEs can be used to generate time dependent geom-
etry. Particularly, we show how the boundary functions which define the PDE can
be given as functions of time. This enables the geometry of a shape to be controlled
and further manipulated according to a certain set of rules which have physically
important meaning [1].

The essential idea behind creating efficient shape parametrization of time de-
pendent geometry is to take these design parameters to be functions of time, thus
enabling a user to create time-dependent geometric models whose motion can be
controlled using a handful of design parameters.

An important point noteworthy here is that the use of analytic solution techniques
for solving PDEs enables fast generation of the geometry, which usually takes a
fraction of a second, thus enabling real-time animations. One can essentially take an
initial geometry and introduce shape parameters on the boundary conditions and the
spine, where the parameters are made time-dependent in order to simulate the ani-
mation process. Thus, given an initial parametrization, the geometry is re-generated
for each time step of the animation process where the time-dependent parameters
are calculated at each stage and the corresponding PDE surfaces are generated. No-
ticeably, this process has the advantage over existing animation techniques such as
key framing in that the animation process is essentially controlled by the animator
via the time dependent shape parameters.

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_8, © Springer-Verlag London Limited 2011

87

http://dx.doi.org/10.1007/978-0-85729-784-6_8

88 8 Other Applications

Fig. 8.1 The generic shape
of a left ventricle of a human
heart. (a) The position
boundary curves. (b) The
resulting shape of the left
ventricle generated using a
combination of four separate
PDE surface patches

8.1.1 Modeling the Time Dependent Geometry of a Human Heart

In this section, we describe how one can model a ventricle of a human heart where
the beating of the heart is simulated. Figure 8.1 shows a representation of the left
ventricle of the heart. This particular geometry involves four separate PDE sur-
face patches which are appropriately joined with common boundaries. Figure 8.1(a)
shows the position boundary curves defining the entire ventricle shape. For the sake
of bringing clarity to the illustration, the position boundary curves are only shown
here, thus omitting the corresponding derivative curves from the figure. The deriva-
tive boundary curves can be generated by means of transforming the correspond-
ing position curves and in the cases when the surface patches meet each other, the
derivative curves are taken in a manner such that tangent plane continuity is ensured
between the patches. Thus, as shown in Fig. 8.1(b), the four surface patches which
make up the left ventricle can be created using separate surface patches between the
curves p1 and p2, p2 and p3, p3 and p4, and p3 and p5. Note that the curve p1 can

8.1 Use of PDEs for Generating Time Dependent Geometry and Animation 89

be initially taken to be a circle where its radius can be then effectively reduced to
zero in order to create a point in R3.

In order to simulate the time-dependent motion of the left ventricle, we utilize the
information provided in [6] describing the changes in the ventricular shape in a heart
beat. Essentially, a heart beat involves three components of motion, namely, axial
contraction, radial contraction and twisting motion. To model these three modes of
motion with realistic changes in volume and dimension of the heart, we define the
time dependent parameters based on the boundary conditions shown in Fig. 8.1(a).
Thus, taking t to be the time, the analytic forms of these boundary conditions are
given as follows:

p2(v, t) = (
x2 + r2(t) cos

(
v + α(t)

)
, y2 + r2(t) sin

(
v + α(t)

)
, z2 − z(t)

)
, (8.1)

p3(v, t) = (
x3 + r3(t) cos

(
v + α(t)

)
sin

(
v − α(t)

)
,

y3 + r3(t) sin
(
v + α(t)

)
, z3 − z(t)

)
, (8.2)

p4(v, t) = (
x4 + r4 cos

(
v + α(t)

)
, y4 + r4 sin

(
v + α(t)

)
, ztop − z(t)

)
, (8.3)

p5(v, t) = (
x5 + r5 cos

(
v + α(t)

)
, y5 + r5 sin

(
v + α(t)

)
, ztop − z(t)

)
, (8.4)

where

z(t) = zch sin2(tπ/tm), (8.5)

r2(t) = r2
(
1 − rch sin2(tπ/tm)

)
, (8.6)

r3(t) = r3
(
1 − rch sin2(tπ/tm)

)
, (8.7)

and

α(t) = αch sin2(tπ/tm). (8.8)

The parameter tm is the time period of a typical cardiac cycle which can be taken
to be 0.8. The function z(t) controls the axial contraction where the parameter rch

can be taken as 0.7. Similarly, the function r(t) controls the radial contraction where
the parameter rch can be taken as 0.3. Finally, the twisting motion is generated via
the parameter α(t) with αch accounting for the amount of twist in the ventricle. Here
the value of αch was taken to be π/4.

With the above parameters describing the dynamics of the heart, it is seen that
realistic animations accounting for the changes in the volume and dimension of the
ventricle for a typical cardiac cycle can be generated in real-time. Figure 8.2 shows
a series of images illustrating the beating of the generic shape of the left ventricle
using the time-dependent shape parameters discussed here.

8.1.2 Facial Animation

Previously in Chap. 4, we have shown how facial geometry can be represented using
PDEs. Here the input to the systems is a set of curves resembling facial geometry.

90 8 Other Applications

Fig. 8.2 A sequence of shapes showing a typical cardiac cycle simulated using the time-dependent
shape parameters introduced on the boundary curves of the corresponding PDE surface patches

This set of curves can be either drawn or extracted form a three-dimensional mesh
model, which in general are obtained from using a 3D laser scanner. Thus, given a
3D scan model of a human face, the standard procedure here is to extract a set of
curves. Each of the curves can be appropriately parameterized so that they can be
used as boundary conditions to solve a PDE.

An efficient parameterizations of a PDE model of a human face can be a very
useful tool for facial animation since an intuitive and controlled manipulation of the
generating curves can lead to realistic facial expressions [4]. Moreover, its paramet-
ric formulation would free valuable storage resources since the animation frames
may be produced as needed. It is also a good alternative for producing animation
sequences for applications with limited computing resources such as mobile phones
or virtual communication since the PDE method can be used obtain simplified ver-
sions of very complicated models without losing a great deal of detail. Mathematical
relations for some of the most common facial expressions can be in the form of sim-
ple mathematical functions such as translations and sinusoidal functions which can
model expressions such as smiling, frowning and eyebrow raising.

Figure 8.3 presents various PDE geometries representing different facial expres-
sions. These expressions include a left side smile, a right smile with a right eyebrow
raise together with unilateral left and right frowns.

Another application that arises from this is the so-called motion re-targeting
whereby an existing mesh model can be animated using PDE generated template

8.1 Use of PDEs for Generating Time Dependent Geometry and Animation 91

Fig. 8.3 PDE surface
representations of different
facial expressions

faces. That is, animation sequences can be transferred form a PDE-based model to
any mesh model semi-automatically as seen in Fig. 8.4 in which facial expressions
generated using PDE surfaces are then transferred to mesh models.

8.1.3 Cyclic Animation

Another area that has benefited from the use of the PDEs for geometric design is
cyclic animation [2]. Here we provide two examples to illustrate this.

8.1.3.1 Human Body Animation

Rig-based animations are those in which a rigid skeleton is manipulated either man-
ually or automatically to create different poses. An analogy between the rig and the
human body is perfectly valid since both are responsible for providing support and
define the position of an object. The layer covering the rig is known as skin (again,
note the analogy with the human body) and this layer is the one that is visible when
the object is rendered on the screen. The PDE method can be employed here to
produce the skin of a rig and then can be used for simulating a number of cyclic
activities by humans. These activities include: crawling, walking, running, cycling,

92 8 Other Applications

Fig. 8.4 An example of motion re-targeting from PDE based animation to a mesh model

swimming and dancing. All of these activities can be performed by simply adjust-
ing a rig that could be built using standard modeling and animation software such
as Maya from Autodesk. The adjustments consist of changing the positions of the
structures associated with the arms and legs accordingly and changing the values
of a set of parameters which control the speed, frequency height and length of the
movement. Thus, the PDE method can be employed as a means of skinning such
a surface at every animation cycle. This is achieved by placing a set of boundary
curves outlining the silhouette of a human body accordingly and then computing
the resulting PDE surface representation for each of the animation frames. Note that
this technique is entirely independent of the skinning technique. This technique can
also be employed to animate fictitious biped characters which, in general, are rep-
resented by very detailed (and hence huge) geometric mesh models. Figure 8.5(a)
shows the generating boundary curves together with the same views of the resulting
PDE geometry. Figure 8.6(b) shows how the boundary curves are attached to the
rig; this has been created using Maya software.

8.1.3.2 Spine-Based Animation for Modeling Fish Locomotion

As discussed earlier, a mathematical property inherent to the PDE method is that of
identifying a spine with one of the terms of the Fourier series associated with the

8.1 Use of PDEs for Generating Time Dependent Geometry and Animation 93

Fig. 8.5 (a) Boundary curves
for generating the PDE
geometry representing the
human body. (b) Illustration
of how the generating curves
are attached to the rig

analytic solution to the PDE as described in Chap. 4. A framework for simulating
the oscillatory movement observed in most of the aquatic animals can be developing
by modeling their movement using PDEs where the spine is the main driver of the
animation [7]. The procedure to achieve this can be described as follows. First, the
spine and the radial component of the PDE surface representing the fish are identi-
fied. Second, the spine is manipulated by means of a sinusoidal function. Finally, the
radial component is added to obtain the corresponding surface representation. Note
that spine-based animations are ideal to be transferred to different geometric models
without spending a great deal of additional effort since the movement is applied to
a feature that both models have in common.

In the case of fish locomotion, the spine can be described as

Spi(u, t) = Sporiginal + Ω(u) cos(αu + φ) sin(2πωti), (8.9)

94 8 Other Applications

Fig. 8.6 PDE surface
representations of two
different poses over a dancing
cycle obtained after skinning
a rig

where Ω(u) determines the amplitude and depends upon u, φ represents the phase,
α denotes the wave number and ω regulates the frequency of the undulatory move-
ment. The subscript i determines the frame for which the animation cycle, and
ti ∈ [0, 1] is the time associated with each respective frame. Notice that u also
requires to be normalized so that its value varies from 0 to 2π .

It is also worth mentioning that for the time being, only the animation of the seg-
ment of the spine representing the length of the fish is considered (8.9), leaving the
fins and the tail of the fish without movement. The parameters associated with this
equation can be adjusted so that different types of fish, varying from water snakes
to dolphins, can be animated using the same formulation. Figure 8.7 represents the
position of the spine corresponding to different times in the animation cycle. Some
frames representing the swimming cycle of a water snake are shown in Fig. 8.8, the
left side of the figure shows the resulting PDE surface representing the water snake
whilst the right presents the animated spine corresponding to each frame. Different
types of fish have been animated using point-to-point correspondence, an example
of this can be seen in Fig. 8.9.

8.2 Use of PDEs for Data Representation and Compression

In real-life, complex geometric shapes are often represented in terms of large poly-
gon meshes or point sets. This requires a considerable amount of data storage and
memory for handling such data. One technique to reduce the amount of data is to
represent the data by means of approximation in terms of mathematical functions.
Common methods for this include the use of splines such as NURBS. However,
such methods for data representation require storing a relatively large set of control
points which are then used by the interpolation procedures during the run time to
produce the polygons.

On the other hand, for model representation, the boundary-value approach
adopted by the PDE seems to be far more efficient. The basic idea here consists

8.2 Use of PDEs for Data Representation and Compression 95

Fig. 8.7 Evolution of the
spine over a cycle. The
horizontal line represents
both the initial and final
position of the spine, whereas
the remaining outline its
position at different values
of t

Fig. 8.8 Different animation
frames of a swimming cycle
of a PDE surface
representation of a water
snake (left) and its
corresponding spine (right)

in defining a complex object through a patch work of PDEs where the coefficients
of the solution function can be used to store and render the data.

Thus, in order to represent a complex polygonal object with irregular and sharp
geometric details in an efficient way, one can make use of a patchwise PDE method
where the configuration of the PDE patches are matched to the complexity of the
geometric model being approximated [5].

An important point to bear in mind here is that, due to the inherent nature of
the analytic solution utilized here to represent the patches, once represented in PDE
format, within each patch the rendering can be performed at arbitrary level of surface
resolution.

Figure 8.10 shows the curve patches that can be used to represent a sphere. The
usual procedure employed to extract curves is to utilize a template which consists of
a low resolution approximation closely matching the object. Figure 8.10(a) contains
the template boundary patches extracted from the low resolution sphere model and
the final PDE patches. The images in Fig. 8.10(b) shows the final PDE surface at

96 8 Other Applications

Fig. 8.9 Examples of realistic fish locomotion using PDE based motion re-targeting

Fig. 8.10 Curve set for
representing the sphere.
(a) The complete curve set
for the template boundary
curves that represents sphere
model. (b) Original sphere
(on the left) and two different
subdivision levels generated
using PDE approximation of
the sphere

two different subdivision levels compared with the original sphere model (on the
left).

8.3 Biharmonic Bézier Surfaces

In Chap. 3, we briefly hightailed that both the Harmonic and Biharmonic operators
are widely used in many application areas. For example, the Harmonic operator, oth-
erwise known as the Laplacian, is associated with a wide range of physical problems
such as gravity, electromagnetism as well as fluid flows. Similarly, the Biharmonic
is also associated with a variety of physical problems such as tension in elastic
membranes and the study of stress and strain in physical structures.

8.3 Biharmonic Bézier Surfaces 97

From a geometric design point of view, these operators have found their way
into geometric design itself, e.g. the PDEs applied to geometric design we have
discussed.

Recent research work has also tried to find the connection between the elliptic
PDE operators and traditional splines, for example, in generating Bézier surfaces
which verify both the Harmonic and Biharmonic Bézier conditions [3].

Harmonic surfaces are related to minimal surfaces: surfaces that minimize the
area among all surfaces with prescribed border. The relation is the following: If a
patch x is isothermal then the surface it represents is minimal if and only if it is
harmonic. The main result from the theory of minimal surfaces states that, under
certain conditions, given the boundary there is a unique minimal surface prescribed
by that boundary.

Furthermore, similar to minimal surfaces, the knowledge of the boundary of a Bi-
harmonic Bézier surface fully determines the entire surface. This is to be compared
with the corresponding result for Harmonic Bézier surfaces where the knowledge of
two opposite boundary curves of the Harmonic Bézier surface fully determines the
surface.

Given a quadratic net of points in R3, {Pij }ni,j=0, the associated Bézier surface,

x : [0,1] × [0,1] → R3, is harmonic, provided for any i, j ∈ {1, . . . , n},
0 = Pi+2,j an,i,0 + Pi+1,j (an,i−1,1 − 2an,i,0) + Pi−1,j (an,i−1,1 − 2an,i−2,2)

+ Pi−2,j an,i−2,2 + Pi,j+2an,j,0 + Pi,j+1(an,j−1,1 − 2an,j,0)

+ Pi,j−1(ban,j−1,1 − 2an,j−2,2) + Pi,j−2an,j−2,2

+ Pij (an,i,0 − 2an,i−1,1 + an,i−2,2 + an,j,0 − 2an,j−1,1 + an,j−2,2). (8.10)

This states that the Harmonic condition implies that some of the control points
can be expressed as linear combinations of the other control points, i.e. the first and
last rows of control points fully determine the Harmonic Bézier surface.

Similarly, given a control net in R3, {Pij }n,m
i,j=0, the associated Bézier surface,

x : [0,1] × [0,1] → R3, is biharmonic, provided for any i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}

4∑
k=0

bn,i−k,k�
4,0Pi−k,j + 2

2∑
k,�=0

an,i−k,kam,j−�,��
2,2Pi−k,j−�

+
4∑

�=0

bm,j−�,��
0,4Pi,j−�, (8.11)

where, for i ∈ {0, . . . , n − 2}
ani0 = (n − i)(n − i − 1),

ani1 = 2(i + 1)(n − i − 1),

ani2 = (i + 1)(i + 2),

98 8 Other Applications

Fig. 8.11 A typical
Biharmonic Bézier surface
where the edges of the
surface patch define Bézier
curves which are taken as the
boundary conditions

and anik = 0 otherwise, and for i ∈ {0, . . . , n − 4}
bni0 = (n − i)(n − i − 1)(n − i − 2)(n − i − 3),

bni1 = 4(i + 1)(n − i − 1)(n − i − 2)(n − i − 3),

bni2 = 6(i + 1)(i + 2)(n − i − 2)(n − i − 3),

bni3 = 4(i + 1)(i + 2)(i + 3)(n − i − 3),

bni4 = (i + 1)(i + 2)(i + 3)(i + 4),

and bnik = 0 otherwise.
Figure 8.11 shows a typical Biharmonic Bézier surface where the edges of the

surface patch define Bézier curves which are taken as the boundary conditions.

8.4 Conclusions

In this chapter, a number of applications which make use of PDEs for geometric de-
sign are discussed. Examples of areas discussed include animation, data modeling
and compression. This chapter should have provided a flavor of the various appli-
cation domains as well as potential application domains related to geometric design
whereby PDEs can play a crucial role.

References

1. Castro CG, Ugail H, Willis P, Palmer I (2008) A survey of partial differential equations in
geometric design. Vis Comput 24(3):213–225. doi:10.1007/s00371-007-0190-z

2. Castro G, Athanasopoulos M, Ugail H (2010) Cyclic animation using partial differential equa-
tions. Vis Comput 26(5):325–338. doi:10.1007/s00371-010-0422-5

3. Monterde J, Ugail H (2006) A general 4th-order PDE method to generate Bézier surfaces from
the boundary. Comput Aided Geom Des 23(2):208–225. doi:10.1016/j.cagd.2005.09.001

4. Sheng Y, Willis P, Castro G, Ugail H (2009) PDE-based facial animation: making the complex
simple, In: Advances in visual computing, part II. Lecture notes in computer science (LNCS),
vol 5359. Springer, Berlin, pp 723–732

http://dx.doi.org/10.1007/s00371-007-0190-z
http://dx.doi.org/10.1007/s00371-010-0422-5
http://dx.doi.org/10.1016/j.cagd.2005.09.001

References 99

5. Sheng Y, Sourin S, Gonzalez Castro G, Ugail H (2010) A PDE method for patchwise ap-
proximation of large polygon meshes. Vis Comput 26(6–8):975–984. doi:10.1007/s00371-
010-0456-8

6. Smith JJ, Kampine JP (1990) Circulatory physiology, the essentials. Williams and Wilkins,
Baltimore

7. Ugail H (2003) On the spine of a PDE surface. In: Wilson MJ, Martin RR (eds) Mathematics
of surfaces X. Springer, Berlin, pp 366–376

8. Ugail H (2004) Spine based shape parameterisation for PDE surfaces. Computing 72:195–206.
doi:10.1007/s00607-003-0057-8

9. Ugail H, Bloor MIG, Wilson MJ (1999) Techniques for interactive design using the PDE
method. ACM Trans Graph 18(2):195–212. doi:10.1145/318009.318078

http://dx.doi.org/10.1007/s00371-010-0456-8
http://dx.doi.org/10.1007/s00371-010-0456-8
http://dx.doi.org/10.1007/s00607-003-0057-8
http://dx.doi.org/10.1145/318009.318078

Chapter 9
Conclusions

This book introduced to the reader the use of partial differential equations for geo-
metric design which has been an important and fast moving field and has many com-
puter based application areas ranging from computer based engineering to computer
animation.

Common geometric design tools available today face many underlying problems.
These include the lack of efficient computer-based techniques to create a satisfactory
design from ‘scratch’, the difficulty a designer faces when interactively manipulat-
ing an existing geometry model, and the problem of generating an optimal design to
serve a specific purpose. The root of this problem is the lack of appropriate mathe-
matical tools which can represent the geometry as well as facilitate the calculation
of the necessary functional aspects of the object one intends to design.

One of the requirements for such a geometric design tool is that it should pos-
sess as much flexibility as possible. In other words, it is crucial to have methods
and techniques which are capable of producing a wide range of alternative shapes
using a minimum number of design parameters. Furthermore, for the purpose of
maintaining consistency, it would be desirable to use the same design parameters
for both analysis and optimization.

In this book, it has been shown that the use of elliptic PDEs is one of possi-
ble mechanisms through which complex geometry can be generated, manipulated,
parameterized and furthermore optimized for specific needs. The positive features
of the geometry generated using PDEs is the ability to generate fair surfaces, to
maintain continuity between adjacent surface patches and the global control that the
design parameters have upon the shape of the surface. Thus, PDEs are capable of
parameterizing complex shapes in terms of a small set of design parameters whilst
maintaining sufficient flexibility in the range of shapes generated.

Hence, in this book we describe the geometric design using PDEs whereby the
design methodology can be divided into three categories: the interactive definition
and parametrization of the geometry, the integration of the design with analysis
using the original parametrization and the design optimization for a chosen design
merit function with some imposed constraints. Thus, the same parametric model
generated using a given PDE can be used to create and manipulate geometry, to

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6_9, © Springer-Verlag London Limited 2011

101

http://dx.doi.org/10.1007/978-0-85729-784-6_9

102 9 Conclusions

enable the appropriate boundary conditions for analysis to be set up and to enable
the imposition of design constraints during optimization.

Appendix
Maple Code to Generate a Surface Patch
for the Biharmonic Equation

The Maple code below can be used to generate a simple PDE surface patch for the
Biharmonic Equation. Here the Biharmonic Equation is solved analytically based on
the solution discussed in Chap. 4. Here we assume the boundary conditions are given
in terms of simple analytic functions which can be represented in terms of a finite
Fourier series. In this particular case, it is assumed that the boundary conditions are
described using the first mode of the Fourier series. Note that the resulting surface
is parametric in which suitable boundary conditions are supplied for each Cartesian
coordinate.

The code can be easily adapted for more complex cases whereby boundary con-
ditions using more than one mode of the Fourier series can be prescribed or even
boundary curves defined by discrete set of points can also be utilized, in which case
the method described in Chap. 4 to obtain a Finite Fourier series from a discrete set
of points can be used.

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6, © Springer-Verlag London Limited 2011

103

http://dx.doi.org/10.1007/978-0-85729-784-6

104 Maple Code to Generate a Surface Patch for the Biharmonic Equation

Index

A
Amplitude, 94
Analytic methods, 28
Analytic solution, 34, 38, 55, 73
Angling parameter, 61, 62
Automatic design, 71
Automatic design for function, 9
Automatic optimization, 82
Axial contraction, 89

B
B-Rep, 12
B-spline, 14, 35, 48, 52, 64, 80
B-spline surface, 11
Bernstein basis functions, 11
Bézier patch, 11
Bézier surfaces, 97
Bicubic patch, 10
Biharmonic, 26, 58
Biharmonic Bézier, 97
Biharmonic equation, 27, 33, 34, 37, 42, 44,

47, 65
Biharmonic operator, 37
Bilinear interpolations, 54
Black–Scholes equation, 23
Blend generation, 31
Blend geometry, 56
Blending, 51
Boltzmann probability distribution, 73
Boundary conditions, 32, 38, 39, 42
Boundary curves, 61
Boundary element method, 29
Boundary-value problem, 31, 36, 51

C
Centroid, 53
Change of variable, 28

Computational fluid dynamics, 9
Computational optimization, 16
Computer aided design, 9
Constraint based interface, 14
Control parameter, 75
Control point insertion, 14
Control points, 11, 14, 65
Coons patch, 11
Critical points, 72
Cross-product, 2
CSG, 13
Cubic spline, 44
Cyclic animation, 91

D
D-NURBS, 15
Deformable B-spline, 14
Derivative boundary curves, 88
Derivative conditions, 35, 38, 41, 52
Derivative vector, 49
Derivatives, 33
Design parameters, 16, 61, 62, 81
Design space, 17
Design variables, 16, 17
Determinant, 4
Dirichlet boundary conditions, 27
Discrete Fourier analysis, 35
Discriminants, 25
Displacement vector, 1
Downhill simplex algorithm, 16
Dynamic NURBS, 14

E
Elliptic PDE, 25, 31, 37, 41, 42, 58
Engineering product, 9
Exact solution, 27

H. Ugail, Partial Differential Equations for Geometric Design,
DOI 10.1007/978-0-85729-784-6, © Springer-Verlag London Limited 2011

105

http://dx.doi.org/10.1007/978-0-85729-784-6

106 Index

F
Facial expressions, 90
Feature based representation, 13
Ferguson patches, 10
Finite difference, 33
Finite difference method, 29
Finite element method, 29
First fundamental form, 7
Fourier modes, 35, 48, 50
Fourier series, 35, 39, 40, 42, 44
Frequency, 94
Function boundary conditions, 38

G
Gaussian, 77
Gaussian curvature, 7
Gaussian elimination, 5
Geometric design, 9, 15, 47
Geometric transformation, 62

H
Harmonic, 26
Harmonic equation, 27, 28
Heat equation, 22
Homogeneity, 24
Hyperbolic partial differential equations, 25
Hyperbolic PDEs, 26

I
Implicit surface, 5
Interactive design, 14, 47
Interactive manipulations, 14
Inverse, 4

K
Knot insertion, 14

L
Laplace equation, 26, 31, 32, 37, 54, 55
Linear equations, 33
Linearity of a PDE, 24
Linearly dependent, 2
Linearly independent, 2
Local manipulation, 65
Local minimum, 74

M
Matrix, 3
Maximize, 16
Maximum, 71
Maximum/minimum principle, 37
Mean curvature, 7, 77
Mesh, 54, 90, 94
Metropolis algorithm, 74

Minimize, 16
Minimum, 71, 77

N
Neumann boundary conditions, 27
Non-uniform rational B-splines, 11
Normal derivative, 49
Numerical methods, 29
Numerical optimization, 16, 71, 73
NURBS, 11, 12, 14, 94

O
Objective function, 16, 71, 72, 76
Optimal design, 82
Order of a PDE, 23

P
Parabolic PDEs, 26
Parameter space, 52, 54, 56
Parametric coordinates, 31
Parametric design, 15
Parametric surface, 6
Parametrization, 33, 48, 63, 77, 80
Partial derivatives, 21, 22
Partial differential equations, 21
PDE, 21, 22, 57, 58
Periodic, 32, 38, 65
Periodic boundary conditions, 34
Periodic function, 36
Physical analogy, 13
Physical problems, 21
Physically based manipulation, 14
Plane, 3
Poisson’s equation, 23
Polygonal mesh, 50
Polynomial-based methods, 10
Position boundary curves, 88
Position parameter, 61
Positional boundary, 41
Positional boundary conditions, 62
Primary surfaces, 51
Principal curvatures, 83
Profile curves, 43, 44

R
Re-parameterize, 53, 58
Remainder, 40

S
Scaling parameter, 63
Second fundamental form, 7
Separation of variables, 28, 32, 39
Shape optimization, 17, 71
Shape parametrization, 87

Index 107

Shear stress, 79, 81
Simulated annealing, 17, 73, 74
Sinusoidal functions, 90
Skeleton, 57
Smoothing operator, 36
Smoothing parameter, 65, 78
Solution to a PDE, 27
Spectral approximation, 40
Spectral methods, 29
Spine, 57, 93
Splines, 94
Spontaneous curvature, 83
Straight line, 3
Surface area, 6
Systems of linear equations, 5

T
Tangent plane, 6, 52, 88
Three dimensional space, 1

Time dependent geometry, 87
Time dependent parametrization, 67
Trace, 4
Transpose, 4
Triharmonic, 26
Triharmonic equation, 27
Trimming, 51
Twisting motion, 89

U
Unit normal, 6

V
Variational geometry, 13
Vesicles, 82

W
Wave equation, 22
Weights, 12

	Partial Differential Equations for Geometric Design
	Preface
	Contents

	Chapter 1: Elementary Mathematics for Geometric Design
	1.1 Vector Algebra
	1.2 Lines and Planes in R3
	1.3 Matrix Algebra and Solving Linear Systems
	1.3.1 Properties of Matrices
	Transpose
	Trace
	Addition
	Multiplication
	Inverse
	Determinant

	1.3.2 Solving Systems of Linear Equations

	1.4 Properties of Surfaces
	1.4.1 Parametric Surface Representation
	1.4.1.1 Properties of Parametric Surfaces
	Tangent Plane
	Unit Normal
	Surface Area
	The First Fundamental Form
	The Second Fundamental Form
	Gaussian and Mean Curvature

	1.5 Summary
	 References

	Chapter 2: Introduction to Geometric Design
	2.1 Introduction
	2.2 Mathematical Methods for Shape Representation in Geometric Design
	2.2.1 Schemes for Geometry Model Representation
	B-Rep Approach
	CSG Approach
	Feature Based Approach
	Variational Approach

	2.3 Enhancing Geometric Design Using Interactive and Parametric Design
	2.3.1 Techniques for Interactive Design
	2.3.2 Parametric Design

	2.4 Use of Optimization Techniques in Geometric Design
	2.5 Summary
	 References

	Chapter 3: Introduction to Partial Differential Equations
	3.1 Definition of a PDE
	3.1.1 Examples of PDEs

	3.2 Classification of PDEs
	3.2.1 Order
	3.2.2 Homogeneity
	3.2.3 Linearity
	3.2.4 Use of a Discriminant as a Classification Method
	3.2.4.1 Elliptic PDEs
	3.2.4.2 Parabolic PDEs
	3.2.4.3 Hyperbolic PDEs

	3.3 Harmonic, Biharmonic and the Triharmonic Equation
	3.3.1 The Biharmonic Equation
	3.3.2 The Triharmonic Equation

	3.4 Solution Methods
	3.4.1 Analytic Methods
	3.4.2 Spectral Methods
	3.4.3 Numerical Methods

	3.5 Conclusions
	 References

	Chapter 4: Elliptic PDEs for Geometric Design
	4.1 Introduction
	4.2 The Laplace Equation
	4.2.1 Numerical Solution Using Finite Difference Method

	4.3 The Biharmonic Equation
	4.3.1 Analytic Solution
	4.3.1.1 Discrete Fourier Analysis

	4.3.2 Geometric Properties of the Biharmonic PDE

	4.4 General Elliptic PDEs
	4.4.1 Analytic Solution

	4.5 Other Variations of the General Elliptic Equation
	4.6 Examples
	4.7 Conclusions
	 References

	Chapter 5: Interactive Design
	5.1 The Approach to Interactive Surface Design
	5.2 Trimming PDE Geometry
	5.2.1 Manipulating Blend Geometry

	5.3 Spine of PDE Geometry
	5.4 Conclusions
	 References

	Chapter 6: Parametric Design
	6.1 Design Parameters via the Boundary Curves
	6.2 Local Parameters on the Boundary Curves
	6.3 The Effect of the Smoothing Parameter a
	6.4 The Effect of v Parametrization
	6.4.1 Time-Dependent Parametrization

	6.5 Summary
	 References

	Chapter 7: Functional Design
	7.1 Introduction
	7.2 Principles of Shape Optimization
	7.3 Simulated Annealing
	7.4 Application of Simulated Annealing to Continuous Optimization Problems
	7.4.1 Simulated Annealing Algorithm
	7.4.2 Constraints

	7.5 Further Examples
	7.5.1 Design Optimization of a Thin-Walled Structure
	7.5.2 Prediction of Stable Structures of Vesicles Occurring in Biological Organisms

	7.6 Conclusions
	 References

	Chapter 8: Other Applications
	8.1 Use of PDEs for Generating Time Dependent Geometry and Animation
	8.1.1 Modeling the Time Dependent Geometry of a Human Heart
	8.1.2 Facial Animation
	8.1.3 Cyclic Animation
	8.1.3.1 Human Body Animation
	8.1.3.2 Spine-Based Animation for Modeling Fish Locomotion

	8.2 Use of PDEs for Data Representation and Compression
	8.3 Biharmonic Bézier Surfaces
	8.4 Conclusions
	 References

	Chapter 9: Conclusions
	Appendix : Maple Code to Generate a Surface Patch for the Biharmonic Equation
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

