CBCS SCHEME

//:	USN	FTA	17CS/IS3	4
	6 1	7	TO 1. 1. C. 1. D. F. D. F. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Computer Organization Computer Organization				
	MATERIAL STATES	A	Computer Organization	
10/	Tin	ne: 3	Max. Marks: 100)
11/4	BANGA	LOW	ote: Answer any FIVE full questions, choosing ONE full question from each module.	
tice.			Module-1	
raining blank pages. $42+8 = 50$, will be treated as malpractice.	1	a.	Draw the connection between the processor and memory. Elaborate the functions of each	h
s ma		4	component in the connection. (07 Mark	
ited a		b.	Write the basic operational steps needed to execute the machine instruction "Add LOCA, R0". (05 Mark	
ss. e trea		c.	What is a stack frame? Explain a commonly used layout for information in a subrouting	
page vill b			stack frame. (08 Mark	s)
olank 50, v			OR	
ning 	2	a.	Write the Register Transfer Notation for the following instructions: (i) MOV LOC, F	
remaii eg, 42		b.	(ii) Add R1, R2, R3 (02 Mark) Define Addressing Modes. Explain the following addressing modes with suitable examples	
the r		0.	(i) Register (ii) Direct (iii) Indirect (iv) Index (v) Auto-decrement (12 Mark	s)
es on s wri		c.	Write an assembly program to add N numbers stored in a consecutive memory location NUM ₁ , NUM ₂ ,, NUM _n and store the result at location SUM by using the branching	as
ss line ation			technique. (06 Mark	
l cros r equ				
compulsorily draw diagonal cross lines on the remaining blank pages, appeal to evaluator and /or equations written eg, $42+8=50$, will be	3	a.	Module-2 What do you mean by DMA? Explain its operation using registers in a DMA interface.	
w dia ator a	3	и.	(08 Mark	
y dra valua		b.	Define Bus arbitration. Explain the two types of bus arbitration. (12 Mark	.s)
sorily Il to e			OR	
mpul	4	a.	Explain the I/O interface for an input device (keyboard interface) to the processor with	
		b.	neat block diagram. (08 Mark Summarize the working mechanism of SCSI bus, and its controllers. Discuss the ma	-
nswe ificat		ا بالالور	phases involved during the read operation using SCSI bus. (08 Mark	s)
On completing your answers, or Any revealing of identification		c.	Differentiate between serial and parallel port communication. CMRIT LIBRARY (04 Mark	.s)
ing y			Module-3 BANGALORE - 560 037	
opleti realir	5	a.	Discuss the read and write operation in a single SRAM cell with the help of circuit diagram	l. ->
n cor ny re		b.	Show the working of a single transistor DRAM cell with the circuit diagram and list	
			advantages. (05 Mark	(s)
ote :		c.	What is cache memory? Explain the direct and associative mapping techniques. (10 Mark	.s)
Ž tu			OR	
Important Note: 1.	6	a.	Draw and discuss the organization of $1K \times 1$ memory chip. (05 Mark	
Im		b.	Design a memory organization of a $2M \times 32$ memory module using $512K \times 8$ static memory and explain the same. (06 Mark	
		c.	Explain the virtual memory organization and its address translation mechanism using paging	
			technique. (09 Mark	

Module-4

- 7 a. Convert the following pairs of decimal numbers to 5-bit, signed, 2' S-complement, binary numbers and add them. State whether or not overflow occurs in each case.
 - (i) 5, 10 (ii) -14, 11 (iii) -3, -8 (iv) -10, -13 (10 Marks)
 - b. Describe the principle of Carry-Look Ahead Addition for a 4-bit adder circuit, built using B-cells and calculate the number of gate delays for S₃ and C₄. (10 Marks)

OR

8 a. Perform the division operation for $11 \div 2$ using (i) Restore (ii) Non-restore methods.

(10 Marks)

- b. Write the process of assigning weights for bit-pair recoding of multipliers for achieving fast multiplication in case of signed numbers. (05 Marks)
- c. Find the product of +13 and -6 using the bit-pair recoding of multiplier technique. (05 Marks)

Module-5

- 9 a. Show a possible control sequence for execution of a complete instruction Add (R₃), R₁ on a single bus processor. (07 Marks)
 - b. Describe the three-bus organization of data path with a neat diagram. (08 Marks)
 - c. With a neat block diagram, explain the working principles of a digital camera. (05 Marks)

OR

- 10 a. Explain the three possible ways of implementing a multiprocessor system using MIMD architecture. (12 Marks)
 - b. Write short notes on:
 - (i) Hardwired Control
 - (ii) Micro programmed Control

CMRIT LIBRARY

(08 Marks)