

15CS63

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 System Software and Compiler Design

MANCALORE. Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain SIC Architecture in detail. (06 Marks) 1 Explain the data structures and Pass-1 algorithm of SIC/ME assembler. (06 Marks) List out the differences between system software and application software. (04 Marks)

OR

- List the different addressing modes used in SIC/XE. Give instructions format for each and explain the addressing mode.
 - b. Generate the machine code for the following:
 - 0000 +JSUB **RDREC**
 - (ii) 0004 STL RETADR
 - (iii) 0008 LDB #LENGTH
 - (iv) 000A CLEAR X

Assume the opcodes are:

 $JSUB = 48_H$, $STL = 14_H$, $LDB = 60_H$, CLEAR = B4

The LC value for : $RDREC = 1036_{H}$

 $RETADR = 0030_{H}$, $LENGTH = 0033_{H}$

The mnemonics values for registers are

A = 0, X = 1, L = 2, B = 3, S = 4, T = 5, F = 6, Pc = 8, SW = 1

Module-2

- With an example show how relocation and linking operations are performed. (08 Marks) (08 Marks)
 - With source code, explain the working of boot-strap loader.

Explain machine independent loader features given an example with implementation.

(08 Marks)

(08 Marks)

With a neat diagram, explain how object program can be processed using linkage loader and (08 Marks) linkage editor. CMRIT LIBRARY

BANGALORE - 560 037

Module-3

- With a neat diagram explain the different phases of the complier. (10 Marks) 5 (06 Marks)
 - Explain the concept of input buffering with its implementation.

- Describe language processing system with a neat diagram. (06 Marks) 6 a.
 - Write the transition diagram for the following:
 - (ii) unsigned numbers (iii) identifiers (06 Marks) (i) relop
 - (04 Marks) Differentiate between compiler and interpreter.

Module-4

7 a. Compute: (i) First() and Follow()

(ii) Predictive parsing table for the given grammar

 $D \rightarrow L ; T$

 $L \rightarrow L$; id | id

 $T \rightarrow int \mid real$

(06 Marks)

b. Consider the CFG with the production set,

 $E \rightarrow E + T \mid T$

 $T \rightarrow TF \mid F$

 $F \rightarrow F* |a|b$

Compute the following,

(i) FIRST() and FOLLOW()

(ii) Set of LR(0) items

(iii) SLR parsing table.

(10 Marks)

OR

8 a. Compute the following for the given grammar.

 $S \rightarrow AA$

 $A \rightarrow a \mid b$

(i) LR(1) items (ii) Canonical Parsing table (iii) Verify for any valid string.

(10 Marks)

b. Write a short note on shift reduce parsing with an example.

(06 Marks)

Module-5

9 a. Write the annotated parse tree and its syntax directed definition to obtain

1 * 2 * 3 * (4 + 5)n for the grammar

 $L \rightarrow En$

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E) \mid digit$

(06 Marks)

b. Translate the arithmetic expression:

a * -(b + c) into

MANGALORE - 560 037

(i) Quadruples (ii) Triples

s (iii) Indirect triples

(06 Marks)

c. Discuss various issues in the design of code generation.

(04 Marks)

OR

10 a. By considering an array type int[3][3], write syntax directed translation with semantic rules and its annotated parse tree. (06 Marks)

b. Obtain the directed acyclic graph for the expression x + x * (y + z) + (y + z) * w, along with the steps. (06 Marks)

c. Generate assembly level language code (target code) for the following three address sequence assuming that p and q are in memory locations:

y = *q

q = q + 4

*p = y

p = p + 4

(04 Marks)

* * * *