Time: 3

VCALORE

be treated as malpract

xth Semester B.E. Degree Examination, Aug./Sept. 2020 **Operating Systems**

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define operating systems. What are multiprocessor systems? Explain their three main (05 Marks)
 - Compare multi-programming and time sharing systems.

(05 Marks)

Point out and explain the various operating system services.

(06 Marks)

What are microkernals? Point out their advantages.

(05 Marks)

- What are the two models of inter process communications? What are the strengths and weakness of the two approaches? (05 Marks)
- Compare and contrast, short term, medium term and long term scheduling.

(06 Marks)

Module-2

- Point out and explain the various benefits of multi threaded programming. (04 Marks)
 - Consider the five processes arrive at time 0, in the order given, with the length of the CPU burst given in milliseconds.

Process	Burst time 10				
P_1					
P ₂	29				
P ₃	3				
P ₄	7				
P ₅	12				

Consider the FCFS, SJF and RR (quantum = 10ms) scheduling, draw the Gantt chart for each of the scheduling. Determine average waiting time and turnaround time for all the 3 scheduling algorithm. Which algorithm would give the minimum average waiting time?

> CMRIT LIBRARY BANGALORE - 560 037

OR

- What is the critical section problem point out and explain its three requirements.
 - What are semaphores, explain how mutual exclusion is implemented with semaphores. b.

(05 Marks)

What is Dimming philosopher problem explain its monitor solution.

(06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be 1

Module-3

5 a. What are deadlocks? Point out and explain its necessary conditions.

(04 Marks)

b. Explain the various methods of recovery from deadlock.

(05 Marks)

c. Consider a system with five processes P₀ through P₄ and three resources types A, B and C. Resource type A has 10 instances, resource type B has 5 instances and resource type C has 7 instances suppose that, at time T₀, the following snapshot of the system.

						Ab. Ware, a			
Allocation		Max			Available				
A	В	С	A	В	С	A	В	С	
0	11	0	7	5	3	3	3	2	
2	. 0	0	3	2	2	lp/			
3	0	2	9	0	2				
2	1	1	2	2	2				
0	0	2	4	3	3				
	A1 A 0 2 3 2 0							- I DI C I DI C I DI D	

Draw the need matrix.

The sequence $\langle P_1, P_3, P_4, P_2, P_0 \rangle$ is safe state or not.

(07 Marks)

OR

6 a. Define paging. Explain paging hardware with a neat block diagram.

(08 Marks)

b. What is segmentation? Explain basic method of segmentation with an example.

(08 Marks)

Module-4

7 a. What is demand paging? Explain the steps in handling a page fault with a neat diagram.

(08 Marks)

b. Consider the following sequence

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

How many page faults occurs with three page frames

i) FIFO

ii) Optimal page replacement

iii) LRU page replacement algorithm.

CMRIT LIBRARY BANGALORE - 560 037

(08 Marks)

OR

8 a. What is a file? What are its attributes, explain file operations.

(06 Marks)

b. Explain what are the different types of files.

(05 Marks)

c. Explain file system mounting.

(05 Marks)

Module-5

9 a. Explain various disk scheduling algorithm with an example.

(10 Marks)

b. Explain access matrix protection system of O.S.

(06 Marks)

OR

10 a. Explain the various. Components of the Linux system.

(08 Marks)

b. Explain the process management in Linux.

(08 Marks)

* * * *