CRCS SCHEME

USN		15CS72
A. Str.	Sal S	Seventh Semester B.E. Degree Examination, Aug./Sept.2020
Sec.		Advanced Computer Architectures
CA	有於	Advanced Computer Architectures
Tin	ie: 3	hrs. Max. Marks: 80
100	RE .	Cy
	N	ote: Answer any FIVE full questions, choosing ONE full question from each module.
		Module-1
1	a.	With a neat diagram. Describe the three shared memory multi processor models. (06 Marks)
	b.	Determine the parallel pairs for the following program statements and prove that parallel
		processing will yield highest performance compared to sequential processing.
		$P1:C=D\times E$
		P2: M = G + C $P3: A = P + C$
		P3 : A = B + C P4 : C = L + M
		P5: $F = G/E$ (05 Marks)
	c.	Explain any five basic metrics affecting the scalability of a computer system for a given
		application. (05 Marks)
		OR
2	a.	With respect to dependencies between the instructions, discuss the following with example:
		i) Data dependency
		ii) Control dependency
	b.	iii) Resource dependency (06 Marks) Explain the different levels of parallelism. (06 Marks)
	c.	Write note on Amadahl's Law. (04 Marks)
	•	A STONE OF THE PARTY
		Module-2 BANGALORE - 560 037
3	a.	Differentiate the characteristics of CISC and RISC Architecture. (06 Marks)
	b.	Explain the architectural features of VLIW processor with timing diagram. How does it
		differ from superscalar processor? (10 Marks)
	1	
	Alexander of the second	OR
4	a.	List the symbolic processor characteristics. Explain the architecture of symbolic 3600 LISP
		processor. (08 Marks)
	b.	With a neat diagram, explain memory hierarchy from low to high levels in detail. (08 Marks)
		Module-3
5	a.	Explain synchronous and Asynchronous bus timing protocols. (05 Marks)
	b.	Explain the features of nonlinear pipeline processor with feed forward and feed backwards

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

connections.

1 of 2

(05 Marks)

c. Consider the following reservation table for a 4-stage pipeline with a clock cycle $\tau = 2ns$.

			23	0	1 1	
	1	2	3	4	5	6
S_1	X					X
S_2		X		X	/48	3
S_1 S_2 S_3			X		SA Do)
	19	C.		X	X	Tar.

- i) What are the forbidden latencies and the initial collision vector?
- ii) Draw the state transition diagrams for scheduling the pipeline.
- iii) Determine the MAL associated with shorted greedy cycle.
- iv) Determine the pipeline throughput corresponding to the MAL and given τ .
- v) Determine the lower bound on the MAL for this pipeline, have you obtained the optimal latency from the above state diagram.

(06 Marks)

OR

6 a. With state diagrams, explain the state transition diagram for a pipeline unit.

(05 Marks)

b. Explain the Tomasulo's algorithm for dynamic instruction scheduling.

(05 Marks)

c. Consider the following pipeline reservation table:

	1	2	3	4
S_1	X	4	>	X
S_2	6	X		
S_3	Contract of	y	X	

- i) What are the forbidden latencies?
- ii) Draw the state transition diagram.
- iii) List all the simple cycles and greedy cycles.
- iv) Determine the optimal constant latency cycle and the minimal average latency.
- v) Let the pipeline clock period be $\tau = 20$ ns. Determine the throughput of this pipeline.

(06 Marks)

Module-4

7 a. With a neat diagram, explain the bus systems at board level, back plane and I/O level.

(08 Marks)

b. Define cache coherence problem. Describe cache coherence problems in data sharing and process migration. (08 Marks)

OR

- 8 a. Explain Goodman's write once cache coherence protocol using write invalidate policy on write back caches. (08 Marks)
 - b. With a neat diagram, explain C-access and S-access organization for an m-way interleaved memory. (08 Marks)

Module-5

- 9 a. With a neat sketch, explain the compilation phases in parallel code-generation. (08 Marks)
 - b. Discuss in brief difference between local and global branch prediction and how a 2 bit branch selector may be used per branch to select between two. Explain with transition diagram. (08 Marks)

OR

- 10 a. Explain the different loop transformations and discuss how to apply to them for loop vectorization or parallelism. (08 Marks)
 - b. Describe in brief the structure of the reorder buffer and how the use of reorder buffer addresses the various types of dependences in the program. (08 Marks)

* * * * *