Third Semester B.E. Degree Examination, Aug./Sept. 2020 **Analog Electronics**

Time: 3 hrs

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive an expression for A_v, Z_i and Z₀ for CE fixed bias using hybrid equivalent model. 1
 - With a neat circuit explain hybrid $-\pi$ model for a transistor in CE configuration. (08 Marks)

- Derive an expression for Z_i, Z₀ and A_v for emitter Follower configuration using r_e model. (08 Marks)
 - For the network shown in Fig Q2(b). Determine:

iii) Z_0 ($r_0 = \alpha \Omega$)

iv) $A_V(r_0 = \alpha \Omega)$

v) A_i ($r_0 = \alpha \Omega$).

Fig Q2(b)

(08 Marks)

Module-2

- Derive an expression for Z_i , Z_0 and $\overline{A_v}$ of FET self bias configuration with bypassed R_s . 3
 - Explain the construction and working principle of n-channel depletion type MOSFET and (08 Marks) draw the characteristic curves.

The fixed bias configuration of Fig Q4(a) has an operating point defined by $V_{GSQ} = -2V$ and $I_{DQ} = 5.625$ mA with $I_{DSS} = 10$ mA and $V_P = -8$ V. Determine :

i) g_m

ii) r_d

iii) Zi

iv) Z₀

v) Av.

Fig Q4(a)

(08 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

b. Draw the JFET common drain configuration circuit. Derive Z_i, Z₀ and A_v using small signal model. (08 Marks)

Module-3

- 5 a. The i/p power to a device is 10,000w at a voltage of 1000V. The output power is 500W and the output impedance is 20Ω .
 - i) Find power gain in db
 - ii) Find voltage gain in db
 - iii) Find input impedance.

(06 Marks)

b. Describe Miller's effect and derive an equation for Miller input and output capacitance.

(10 Marks)

OR

6 a. Explain high frequency response of FET amplifier.

(06 Marks)

b. Determine A_v , Z_i , A_{vs} , F_{LS} for the low frequency response of the BJT amplifier circuit shown in Fig Q6(b). Assume $r_0 = \alpha$.

Fig Q6(b) (10 Marks)

Module-4

- 7 a. Explain with neat circuit diagram the operation of transistor Colpitt's oscillator. (08 Marks)
 - b. What are the effects of negative feedback in an amplifier? Show how bandwidth of an amplifier increases with negative Feedback. (08 Marks)

OR

- 8 a. Mention the types of Feedback connections. Draw their block diagrams indicating i/p and o/p signal. (08 Marks)
 - b. With a neat circuit and waveforms, explain the working operation of UJT relaxation oscillator. (08 Marks)

Module-5

- 9 a. Explain the operation of class B push pull amplifier and show that maximum conversion η is 78.5%
 (10 Marks)
 - b. The Following distortion readings are available for a power amplifier $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.01$ with $I_1 = 4A$, $R_c = 8\Omega$.
 - i) Calculate the THD
 - ii) Determine the fundamental power component
 - iii) Calculate the total power.

(06 Marks)

OR

10 a. Explain series voltage regulator using transistor.

(08 Marks)

b. Explain series Fed class A power amplifier. Show that its maximum conversion η is 25%.

(08 Marks)