USN

15EC34

Third Semester B.E. Degree Examination, Aug./Sept.2020 Network Analysis

Time: 3/hr

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Reduce the circuit shown in Fig.Q1(a) into single voltage source with series resistance between terminals A and B.

Fig.Q1(a)

(06 Marks)

b. Using Mesh analysis, find the current I₁ for the circuit shown in Fig.Q1(b).

Fig.Q1(b)

(06 Marks)

c. Explain the concept of Super node.

(04 Marks)

OR

2 a. Determine the resistance between terminals A and B of the circuit shown in Fig.Q2(a) using Star to Delta conversion.

Fig.Q2(a)

(06 Marks)

CMRIT LIBRARY
BANGALORE - 560 037

b. Using Nodal analysis, find the value of V_x in the circuit shown in Fig.Q2(b), such that the current through $(2 + j3)\Omega$. Impedance is zero.

c. Explain the Dependent sources.

(06 Marks) (04 Marks) Module-2

For the circuit shown in Fig.Q3(a), find the current through 20 Ω resistor using super position theorem.

(08 Marks)

b. For ac circuits, prove that the maximum power deliver to load is

where V_{th} - Thevenin's equivalent voltage and R_{th} - Thevenins equivalent resistance.

(08 Marks)

State the Millman's theorem. Using Millman's theorem, determine the current through $(2+i2)\Omega$ impedance for the network shown in Fig.Q4(a).

Fig.Q4(a)

(08 Marks)

State the Thevinin's Theorem and obtain the Thevinin's equivalent circuit for the circuit shown in Fig.Q4(b).

Module-3

Explain the behavior of a inductor and capacitor under switching conditions in detail. 5

The switch is changed from position to position 2 at t = 0. Steady State condition have been reached in position 1. Find the value i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$ for the circuit shown in Fig.Q5(b).

Fig.Q5(b)

(08 Marks)

Find the Laplace of f(t) shown in Fig.Q6(a).

Fig.Q6(a)

2 of 3

(08 Marks)

(08 Marks)

(08 Marks)

(08 Marks)

b. Find the impulse response of the circuit shown in Fig.Q6(b). Assuming that all initial conditions to be zero.

Module-4

- 7 a. Derive the expression for frequency at which voltage across the capacitor is maximum of a series resonance circuit. (08 Marks)
 - b. Show that the circuit shown in Fig.Q7(b) can have more than one resonant condition.

OR

8 a. Determine the parallel resonance circuit parameters whose response curve is shown in Fig.Q8(a). What are the new values of W_r and bond width if 'c' is increased 4 times?

b. Prove that the bandwidth of a series resonance circuit $f_2 - f_1 = \frac{R}{2\pi L}$. (08 Marks)

Module-5

- 9 a. Express the z-parameters in terms of Y-parameter.
 - b. For the network shown in Fig.Q9(b), find the transmission parameters.

OR

- 10 a. Express the h-parameter in terms of Z-parameters.
 - b. Find the z-parameter for the two-port network shown in Fig.Q10(b).

